thesis

Advances in Supply Chain Management Decision Support Systems: Potential for Improving Decision Support Catalysed by Semantic Interoperability between Systems

Abstract

Globalization has catapulted ‘cycle time’ as a key indicator of operational efficiency [1] in processes such as supply chain management (SCM). Systems automation holds the promise to augment the ability of supply chain operations or supply networks to rapidly adapt to changes, with minimal human intervention, under ideal conditions. Business communities are emerging as loose federations or organization of networks that may evolve to act as infomediaries in global SCM. These changes, although sluggish, are likely to impact process knowledge and in turn may be stimulated or inhibited by the availability or lack of process interoperability, respectively. The latter will determine operational efficiencies of supply chains. Currently “community of systems” or organization of networks (aligned by industry or business focus) contribute minimally in SCM decisions because true collaboration remains elusive. Convergence and maturity of multiple advances offers the potential for a paradigm shift in interoperability. It may evolve hand-in-hand with [a] the gradual adoption of the semantic web [2] with concomitant development of ontological frameworks, [b] increase in use of multi-agent systems and [c] advent of ubiquitous computing enabling near real-time access to identification of objects and analytics [4]. This paper examines some of these complex trends and related technologies. Irrespective of the characteristics of information systems, the development of various industry-contributed ontologies for knowledge and decision layers, may spur self-organizing networks of business communities and systems to increase their ability to sense and respond, more profitably, through better enterprise and extraprise exchange. In order to transform this vision into reality, systems automation must be weaned from the syntactic web and integrated with the organic growth of the semantic web. Understanding of process semantics and incorporation of intelligent agents with access to ubiquitous near real-time data “bus” are pillars for “intelligent” evolution of decision support systems. Software as infrastructure may integrate plethora of agent colonies through improved architectures (such as, service oriented architecture or SOA) and business communities aligned by industry or service focus may emerge as hubs of such agent empires. However, the feasibility of the path from exciting “pilots” in specific areas toward an informed convergence of systemic real-world implementation remains unclear and fraught with hurdles related to gaps in knowledge transfer from experts in academia to real-world practitioners. The value of interoperability between systems that may catalyse real-time intelligent decision support is further compromised by the lack of clarity of approach and tools. The latter offers significant opportunities for development of tools that may segue to innovative solutions approach. A critical mass of such solutions may spawn the necessary systems architecture for intelligent interoperability, essential for sustainable profitability and productivity in an intensely competitive global economy. This paper addresses some of these issues, tools and solutions that may have broad applicability in several operations including the management of adaptive supply-demand networks [7]

    Similar works