research

Ultrasonic Imaging Transceiver Design for CMUT: A Three-Level 30-Vpp Pulse-Shaping Pulser With Improved Efficiency and a Noise-Optimized Receiver

Abstract

This paper demonstrates a four-channel transceiver chip for medical ultrasonic imaging, interfacing to the capacitive micromachined ultrasonic transducers (CMUTs). The high-voltage transmitter (Tx) uses a three-level pulse-shaping technique with charge recycling to improve the power efficiency. The design requires minimum off-chip components and is scalable for more channels. The receiver is implemented with a transimpedance amplifier (TIA) topology and is optimized for tradeoffs between noise, bandwidth, and power dissipation. The test chip is characterized with both acoustic and electrical measurements. Comparing the three-level pulser against traditional two-level pulsers, the measured Tx efficiency shows 56%, 50%, and 43% more acoustic power delivery with the same total power dissipation at 2.5, 3.3, and 5.0 MHz, respectively. The CMUT receiver achieves the lowest noise efficiency factor compared with that of the literature (2.1 compared to a previously reported lowest of 3.6, in units of mPA ·√(mW/Hz). In addition, the transceiver chip is tested as a complete system for medical ultrasound imaging applications, in experiments including Tx beamformation, pulse-echo channel response characterization, and ultrasonic Doppler flow rate detection.Semiconductor Research Corporation. Focus Center for Circuit and System Solutions (C2S2

    Similar works