Helicopter Autonomous Ship Landing System

Abstract

This research focuses on developing a helicopter autonomous ship landing algorithm based on the real helicopter ship landing procedure which is already proven and currently used by Navy pilots. It encompasses the entire ship landing procedure from approach to landing using a pilot-inspired vision-based navigation system. The present thesis focuses on the first step towards achieving this overarching objective, which involves modeling the flight dynamics and control of a helicopter and some preliminary simulations of a UH-60 (Blackhawk) helicopter landing on a ship. The airframe of the helicopter is modeled as a rigid body along with rotating articulated blades that can undergo flap, lag and pitch motions about the root. A UH-60 helicopter is used for a representative model due to its ample simulation and flight test data. Modeling a UH-60 helicopter is based on Blade Element Momentum Theory (BEMT), rotor aerodynamics with the Pitt-Peters linear inflow model, empennage aerodynamics and rigid body dynamics for fuselage. For the blade dynamics, the cyclic (1/rev) and collective pitch motions are prescribed and the blade (1/rev) flap and lag motions are obtained as a response to the aerodynamic and inertial forces. The helicopter control inputs and translational and attitude dynamics obtained from the model are validated with flight test data at various speeds and attitude. A linearized model is extracted based on a first-order Taylor series expansion of the nonlinear system about an equilibrium point for the purpose of determining the stability of the dynamic system, investigating sensitivity to gusts, and designing a model-based flight control system. Combined vision-based navigation and Linear Quadratic Regulator (LQR) for set-point tracking is used for disturbance rejection and tracking states. A rotatable camera is used for identifying the relative position of the helicopter with respect to the ship. Based on the position, a corresponding trajectory is computed. Considering the trade-off between transient responses and control efforts, gains for the LQR controller are chosen carefully and realistically. A fully autonomous flight is simulated from approach to landing on a ship. It consists of initial descent, steady forward flight, steady coordinated turn, deceleration, and final landing. Corresponding to each maneuver, relevant linearized model is used and gains are tuned. By using X-plane flight simulator program, the simulation data which include fuselage attitude and position at each time step are visualized with a single flight deck ship. This method allows an aircraft to land on a ship autonomously while maintaining high level of safety and accuracy without the need to capture the ship deck motions, however, by using a camera, and any other additional sensors, which will provide the accurate location of the ship relative to the helicopter. This method is not only relevant for a particular helicopter, but for any types of VTOL aircraft, manned or unmanned. Hence, it can improve the level of safety by preventing human errors that may occur during landing on a ship

    Similar works