CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
Guaranteed parameter estimation in nonlinear dynamic systems using improved bounding techniques
Authors
B Chachuat
M Fikar
R Paulen
M Villanueva
Publication date
1 January 2013
Publisher
'Institute of Electrical and Electronics Engineers (IEEE)'
Abstract
This paper is concerned with guaranteed parameter estimation in nonlinear dynamic systems in a context of bounded measurement error. The problem consists of finding - or approximating as closely as possible - the set of all possible parameter values such that the predicted outputs match the corresponding measurements within prescribed error bounds. An exhaustive search procedure is applied, whereby the parameter set is successively partitioned into smaller boxes and exclusion tests are performed to eliminate some of these boxes, until a prespecified threshold on the approximation level is met. Exclusion tests rely on the ability to bound the solution set of the dynamic system for a given parameter subset and the tightness of these bounds is therefore paramount. Equally important is the time required to compute the bounds, thereby defining a trade-off. It is the objective of this paper to investigate this trade-off by comparing various bounding techniques based on interval arithmetic, Taylor model arithmetic and ellipsoidal calculus. When applied to a simple case study, ellipsoidal and Taylor model approaches are found to reduce the number of iterations significantly compared to interval analysis, yet the overall computational time is only reduced for tight approximation levels due to the computational overhead. © 2013 EUCA
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Supporting member
Spiral - Imperial College Digital Repository
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:spiral.imperial.ac.uk:1004...
Last time updated on 17/02/2017