Effectiveness of vaccination and quarantine policies to curb the spread of COVID-19

Abstract

A pandemic, the worldwide spread of a disease, can threaten human beings from the social as well as biological perspectives and paralyze existing living habits. To stave off the more devastating disaster and return to a normal life, people make tremendous efforts at multiscale levels from individual to worldwide: paying attention to hand hygiene, developing social policies such as wearing masks, social distancing, quarantine, and inventing vaccines and remedy. Regarding the current severe pandemic, namely the coronavirus disease 2019, we explore the spreading-suppression effect when adopting the aforementioned efforts. Especially the quarantine and vaccination are considered since they are representative primary treatments for block spreading and prevention at the government level. We establish a compartment model consisting of susceptible (S), vaccination (V), exposed (E), infected (I), quarantined (Q), and recovered (R) compartments, called SVEIQR model. We look into the infected cases in Seoul and consider three kinds of vaccines, Pfizer, Moderna, and AstraZeneca. The values of the relevant parameters are obtained from empirical data from Seoul and clinical data for vaccines and estimated by Bayesian inference. After confirming that our SVEIQR model is plausible, we test the various scenarios by adjusting the associated parameters with the quarantine and vaccination policies around the current values. The quantitative result obtained from our model could suggest a guideline for policy making on effective vaccination and social policies.Comment: 8 pages, 5 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions