This paper presents a computational framework for the Principal Geodesic
Analysis of merge trees (MT-PGA), a novel adaptation of the celebrated
Principal Component Analysis (PCA) framework [87] to the Wasserstein metric
space of merge trees [92]. We formulate MT-PGA computation as a constrained
optimization problem, aiming at adjusting a basis of orthogonal geodesic axes,
while minimizing a fitting energy. We introduce an efficient, iterative
algorithm which exploits shared-memory parallelism, as well as an analytic
expression of the fitting energy gradient, to ensure fast iterations. Our
approach also trivially extends to extremum persistence diagrams. Extensive
experiments on public ensembles demonstrate the efficiency of our approach -
with MT-PGA computations in the orders of minutes for the largest examples. We
show the utility of our contributions by extending to merge trees two typical
PCA applications. First, we apply MT-PGA to data reduction and reliably
compress merge trees by concisely representing them by their first coordinates
in the MT-PGA basis. Second, we present a dimensionality reduction framework
exploiting the first two directions of the MT-PGA basis to generate
two-dimensional layouts of the ensemble. We augment these layouts with
persistence correlation views, enabling global and local visual inspections of
the feature variability in the ensemble. In both applications, quantitative
experiments assess the relevance of our framework. Finally, we provide a
lightweight C++ implementation that can be used to reproduce our results