Optimization Approaches for Solving Large-Scale Personnel Scheduling Problems

Abstract

Personnel scheduling is one of the most critical components in logistical planning for many practical areas, particularly in transportation, public services, and clinical operations. Because manpower is both an expensive and scarce resource, even a tiny improvement in utilization can provide huge expense savings for businesses. Additionally, a slightly better assignment schedule of the involved professionals can significantly increase their work satisfaction, which can in turn greatly improve the quality of the services customers or patients receive. However, practical personnel scheduling problems (PSPs) are hard to solve because modeling all of the complicated and nuanced requirements and rules is challenging. Moreover, since an iterative construction process may be necessary for handling the multiple-criteria or ill-defined objective nature of many PSPs, the model is expected to be solved in a short time while providing high-quality solutions, despite its large size and complexity. In this dissertation, we propose new models and solution approaches to address these challenges. We study in total three real-world PSPs. We first consider the crew pairing construction for a cargo airline. Each crew pairing is a sequence of flights assigned to a specific line/bid crew to operate in practice. Unlike traditional passenger aviation, due to the cargo airline's underlying network, each crew pairing will specify a complete flying schedule for the assigned crew over the entire planning horizon. Consequently, an extra and unique set of requirements must be incorporated into the construction process. We solve the problem using a delayed column generation framework. We develop a restricted shortest path model to incorporate the entire set of complicated requirements simultaneously and solve it using a labeling algorithm accelerated by a handful of proposed strategies. Computational experiments show that our approach can solve the crew pairing problem in a short time, while almost always delivering an optimal solution. Second, we consider an extension of the previous cargo crew scheduling problem, where a "break" is allowed to take place in the "middle" of each crew pairing. This break feature, working as a special type of conventional deadheading, is expected to significantly increase the flight coverage for practical deployment. However, incorporating this feature will result in an extremely dense underlying network, which introduces new computational challenges. To address this issue, we propose a bidirectional labeling based arc selection approach, which only needs to work on a tiny sub-network each time but can still guarantee the exactness of the delayed column generation process. We demonstrate through real-world instances that our proposed approach can solve this relaxed problem extension in a very short time and the resulting flight coverage will increase by over 30%. Finally, we study a medical resident annual block scheduling problem. We need to assign residents to perform services at different clinical units during each time period across the academic year so that the residents receive appropriate training while the hospital gets staffed sufficiently. We propose a two-stage partial fixing solution framework to address the long runtime issue caused by traditional approaches. A network-based model is also developed to provide a high-quality service selection to initiate this two-stage framework. Experiments using inputs from our clinical collaborator show that our approach can speed up the schedule construction at least 5 times for all instances and even over 100 times for some huge-size ones compared to a widely-used traditional approach.PHDIndustrial & Operations EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/169758/1/jhguo_1.pd

    Similar works

    Full text

    thumbnail-image