Flat optical conductivity in topological kagome magnet TbMn6_6Sn6_6

Abstract

Kagome magnet TbMn6_6Sn6_6 is a new type of topological material that is known to support exotic quantum magnetic states. Experimental work has identified that TbMn6_6Sn6_6 hosts Dirac electronic states that could lead to topological and Chern quantum phases, but the optical response of the Dirac fermions of TbMn6_6Sn6_6 and its properties remain to be explored. Here, we perform optical spectroscopy measurement combined with first-principles calculations on single-crystal sample of TbMn6_6Sn6_6 to investigate the associated exotic phenomena. TbMn6_6Sn6_6 exhibits a frequency-independent optical conductivity spectra in a broad range from 1800 to 3000 cmβˆ’1^{-1} (220-370 meV) in experiments. The theoretical band structures and optical conductivity spectra are calculated with several shifted Fermi energy to compare with the experiment. The theoretical spectra with 0.56 eV shift for Fermi energy are well consistent with our experimental results. Besides, the massive quasi-two-dimensional (quasi-2D) Dirac bands, which have linear band dispersion in kxk_x-kyk_y plane and no band dispersion along the kzk_z direction, exist close to the shifted Fermi energy. According to tight-bond model analysis, we find that quasi-2D Dirac bands give rise to a flat optical conductivity, while its value is smaller than the result by calculations and experiments. It indicates that the other trivial bands also contribute to the flat optical conductivity

    Similar works

    Full text

    thumbnail-image

    Available Versions