This work considers optimization of composition of functions in a nested form
over Riemannian manifolds where each function contains an expectation. This
type of problems is gaining popularity in applications such as policy
evaluation in reinforcement learning or model customization in meta-learning.
The standard Riemannian stochastic gradient methods for non-compositional
optimization cannot be directly applied as stochastic approximation of inner
functions create bias in the gradients of the outer functions. For two-level
composition optimization, we present a Riemannian Stochastic Composition
Gradient Descent (R-SCGD) method that finds an approximate stationary point,
with expected squared Riemannian gradient smaller than ϵ, in
O(ϵ−2) calls to the stochastic gradient oracle of the outer
function and stochastic function and gradient oracles of the inner function.
Furthermore, we generalize the R-SCGD algorithms for problems with multi-level
nested compositional structures, with the same complexity of O(ϵ−2)
for the first-order stochastic oracle. Finally, the performance of the R-SCGD
method is numerically evaluated over a policy evaluation problem in
reinforcement learning