Non-Minimal Inflation with a scalar-curvature mixing term 12ξRϕ2\frac{1}{2} \xi R \phi^2

Abstract

We use the PLANCK 2018 and the WMAP data to constraint inflation models driven by a scalar field ϕ\phi in the presence of the non-minimal scalar-curvature mixing term 12ξRϕ2\frac{1}{2}\xi R \phi^2. We propose four scalar field potentials ϕpe−λϕ, (1−ϕp)e−λϕ, (1−λϕ)p\phi^p e^{-\lambda\phi},~(1 - \phi^{p})e^{-\lambda\phi},~(1-\lambda\phi)^p and αϕ21+αϕ2\frac{\alpha\phi^2}{1+\alpha\phi^2} in the non-minimal scenario. We calculate the slow-roll parameters and predict the scalar spectral index nsn_s, the tensor to scalar ratio rr and tensor spectral index nTn_T in the parameters(λ,p,α\lambda, p, \alpha) space of the potential. We compare our results with the PLANCK 2018 and WMAP data and found that the non-minimal parameter ξ\xi lies between 10−3∼10−510^{-3} \sim 10^{-5}.Comment: 17 pages, 7 figures, 6 table

    Similar works

    Full text

    thumbnail-image

    Available Versions