A primal-dual approach for solving conservation laws with implicit in time approximations

Abstract

In this work, we propose a novel framework for the numerical solution of time-dependent conservation laws with implicit schemes via primal-dual hybrid gradient methods. We solve an initial value problem (IVP) for the partial differential equation (PDE) by casting it as a saddle point of a min-max problem and using iterative optimization methods to find the saddle point. Our approach is flexible with the choice of both time and spatial discretization schemes. It benefits from the implicit structure and gains large regions of stability, and overcomes the restriction on the mesh size in time by explicit schemes from Courant--Friedrichs--Lewy (CFL) conditions (really via von Neumann stability analysis). Nevertheless, it is highly parallelizable and easy-to-implement. In particular, no nonlinear inversions are required! Specifically, we illustrate our approach using the finite difference scheme and discontinuous Galerkin method for the spatial scheme; backward Euler and backward differentiation formulas for implicit discretization in time. Numerical experiments illustrate the effectiveness and robustness of the approach. In future work, we will demonstrate that our idea of replacing an initial-value evolution equation with this primal-dual hybrid gradient approach has great advantages in many other situations

    Similar works

    Full text

    thumbnail-image

    Available Versions