Fixed-parameter tractability of Directed Multicut with three terminal pairs parameterized by the size of the cutset: twin-width meets flow-augmentation

Abstract

We show fixed-parameter tractability of the Directed Multicut problem with three terminal pairs (with a randomized algorithm). This problem, given a directed graph GG, pairs of vertices (called terminals) (s1,t1)(s_1,t_1), (s2,t2)(s_2,t_2), and (s3,t3)(s_3,t_3), and an integer kk, asks to find a set of at most kk non-terminal vertices in GG that intersect all s1t1s_1t_1-paths, all s2t2s_2t_2-paths, and all s3t3s_3t_3-paths. The parameterized complexity of this case has been open since Chitnis, Cygan, Hajiaghayi, and Marx proved fixed-parameter tractability of the 2-terminal-pairs case at SODA 2012, and Pilipczuk and Wahlstr\"{o}m proved the W[1]-hardness of the 4-terminal-pairs case at SODA 2016. On the technical side, we use two recent developments in parameterized algorithms. Using the technique of directed flow-augmentation [Kim, Kratsch, Pilipczuk, Wahlstr\"{o}m, STOC 2022] we cast the problem as a CSP problem with few variables and constraints over a large ordered domain.We observe that this problem can be in turn encoded as an FO model-checking task over a structure consisting of a few 0-1 matrices. We look at this problem through the lenses of twin-width, a recently introduced structural parameter [Bonnet, Kim, Thomass\'{e}, Watrigant, FOCS 2020]: By a recent characterization [Bonnet, Giocanti, Ossona de Mendes, Simon, Thomass\'{e}, Toru\'{n}czyk, STOC 2022] the said FO model-checking task can be done in FPT time if the said matrices have bounded grid rank. To complete the proof, we show an irrelevant vertex rule: If any of the matrices in the said encoding has a large grid minor, a vertex corresponding to the ``middle'' box in the grid minor can be proclaimed irrelevant -- not contained in the sought solution -- and thus reduced

    Similar works

    Full text

    thumbnail-image

    Available Versions