Topological crystalline insulator surface states can acquire an energy gap
when time reversal symmetry is broken by interfacing with a magnetic insulator.
Such hybrid topological-magnetic insulator structures can be used to generate
novel anomalous Hall effects and to control the magnetic state of the insulator
in a spintronic device. In this work, the energy gap of topological surface
states in proximity with a magnetic insulator is measured using Landau level
spectroscopy. The measurements are carried out on Pb1-xSnxSe/EuSe
heterostructures grown by molecular beam epitaxy exhibiting record mobility and
a low Fermi energy enabling this measurement. We find an energy gap that does
not exceed 20meV and we show that is due to the combined effect of quantum
confinement and magnetic proximity. The presence of magnetism at the interface
is confirmed by magnetometry and neutron reflectivity. The recovered energy gap
sets an upper limit for the Fermi level needed to observe the quantized
anomalous Hall effect using magnetic proximity heterostructures