Abstract

A stable platform to synthesize ultrathin heavy metals, with a strong interfacial Rashba effect, could lead to high efficiency charge-to-spin conversion for next-generation spintronics. Here we report wafer-scale synthesis of air-stable, epitaxially registered monolayer Pb on SiC (0001) via confinement heteroepitaxy (CHet). The highly asymmetric interfacial bonding in this heavy metal system lends to strong Rashba spin-orbit coupling near the Fermi level. Additionally, the system's air stability enables ex-situ spin torque ferromagnetic resonance (ST-FMR) measurements that demonstrate charge-to-spin conversion in CHet-based 2D-Pb/ferromagnet heterostructures and a 1.5x increase in the effective field ratio compared to control samples.Comment: 17 pages, 4 figures. Supporting Information included (20 pages, 9 figures, 1 table

    Similar works

    Full text

    thumbnail-image

    Available Versions