CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
Mechanical performance of additively manufactured cobalt-chromium-molybdenum auxetic meta-biomaterial bone scaffolds
Authors
Arun Arjunan
Ahmad Baroutaji
+3 more
Manpreet Singh
Chameekara T Wanniarachchi
Chameekra T Wanniarachchi
Publication date
30 July 2022
Publisher
'Elsevier BV'
Doi
Cite
Abstract
© 2022 The Authors. Published by Elsevier. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.1016/j.jmbbm.2022.105409Auxetic meta-biomaterials offer unconventional strain behaviour owing to their negative Poisson's ratio () leading to deformation modes and mechanical properties different to traditional cellular biomaterials. This can lead to favourable outcomes for load-bearing tissue engineering constructs such as bone scaffolds. Emerging early-stage studies have shown the potential of auxetic architecture in increasing cell proliferation and tissue reintegration owing to their . However, research on the development of CoCrMo auxetic meta-biomaterials including bone scaffolds or implants is yet to be reported. In this regard, this paper proposes a potential framework for the development of auxetic meta-biomaterials that can be printed on demand while featuring porosity requirements suitable for load-bearing bone scaffolds. Overall, the performance of five CoCrMo auxetic meta-biomaterial scaffolds characterised under two scenarios for their potential to offer near-zero and high negative Poisson's ratio is demonstrated. Ashby's criterion followed by prototype testing was employed to evaluate the mechanical performance and failure modes of the auxetic meta-biomaterial scaffolds under uniaxial compression. The best performing scaffold architectures are identified through a multi-criteria decision-making procedure combining ‘analytic hierarchy process’ (AHP) and ‘technique for order of preference by similarity to ideal solution’ (TOPSIS). The results found the Poisson's ratio for the meta-biomaterial architectures to be in the range of −0.1 to −0.24 at a porosity range of 73–82%. It was found that the meta-biomaterial scaffold (AX1) that offered the highest auxeticity also showed the highest elastic modulus, yield, and ultimate strength of 1.66 GPa, 56 MPa and 158 MPa, respectively. The study demonstrates that the elastic modulus, yield stress, and Poisson's ratio of auxetic meta-biomaterials are primarily influenced by the underlying meta-cellular architecture followed by relative density offering a secondary influence.Published versio
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Wolverhampton Intellectual Repository and E-theses
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:wlv.openrepository.com:243...
Last time updated on 23/09/2022
Aston Publications Explorer
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:publications.aston.ac.uk:4...
Last time updated on 24/07/2023
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1016%2Fj.jmbbm.202...
Last time updated on 07/06/2024