Being a pair of dual concepts, the normalized distance and similarity
measures are very important tools for decision-making and pattern recognition
under intuitionistic fuzzy sets framework. To be more effective for
decision-making and pattern recognition applications, a good normalized
distance measure should ensure that its dual similarity measure satisfies the
axiomatic definition. In this paper, we first construct some examples to
illustrate that the dual similarity measures of two nonlinear distance measures
introduced in [A distance measure for intuitionistic fuzzy sets and its
application to pattern classification problems, \emph{IEEE Trans. Syst., Man,
Cybern., Syst.}, vol.~51, no.~6, pp. 3980--3992, 2021] and [Intuitionistic
fuzzy sets: spherical representation and distances, \emph{Int. J. Intell.
Syst.}, vol.~24, no.~4, pp. 399--420, 2009] do not meet the axiomatic
definition of intuitionistic fuzzy similarity measure. We show that (1) they
cannot effectively distinguish some intuitionistic fuzzy values (IFVs) with
obvious size relationship; (2) except for the endpoints, there exist infinitely
many pairs of IFVs, where the maximum distance 1 can be achieved under these
two distances; leading to counter-intuitive results. To overcome these
drawbacks, we introduce the concepts of strict intuitionistic fuzzy distance
measure (SIFDisM) and strict intuitionistic fuzzy similarity measure (SIFSimM),
and propose an improved intuitionistic fuzzy distance measure based on
Jensen-Shannon divergence. We prove that (1) it is a SIFDisM; (2) its dual
similarity measure is a SIFSimM; (3) its induced entropy is an intuitionistic
fuzzy entropy. Comparative analysis and numerical examples demonstrate that our
proposed distance measure is completely superior to the existing ones