In this paper, we consider the problem of mechanical wave scattering from a
spatially finite system into an infinite surrounding environment. The goal is
to illuminate why the scattering spectrum undergoes peaks and dips (resonances)
at specific locations and how these locations connect to the vibrational
properties of the scatterer. The resonance locations are connected to the
eigenvalues of a finite dimensional effective operator, Heffβ,
corresponding to the scatterer. The developments are presented from the
perspective of open systems, which seeks to convert the infinite dimensional
scattering problem (scatterer+environment) into a finite dimensional effective
problem involving only the finite scatterer. This is achieved through a
projection operator formalism which allows us to formally calculate Heffβ.
An interesting corollary of our analysis is the deep connection between
resonance locations in the scattering spectrum and the eigenfrequencies of the
scatterer under Neumann boundary condition. We bring out this point further by
considering 3D scattering from an elastic shell, connecting our results to
classical results in acousto-elastic scattering theory