thesis

Molekulardynamische Untersuchungen heterogener Keimbildung

Abstract

Heterogeneous nucleation phenomena, in particular the condensation of vapors in presence of a substrate, are studied by molecular dynamics simulations. The simulations reported to this date have paid little attention to the description on the substrate. Here the dynamics of the vapor phase and the surface are simultaneously treated. Two cases are studied: the condensation of argon and the condensation of platinum on polyethylene films. The fundamental difference between both systems is the relative strength of the adsorbate-substrate interactions. The United Atom Method is used to represent the interactions of methyl groups within the polymer. The properties of polyethylene in the bulk phase such as the glass transition temperature, the density and the formation of gauche defects in the crystalline phase can be well described with this model. The interactions between argon atoms can be well represented by the Lennard Jones potential. The Embedded Atom Method is used to describe interactions between platinum atoms since many body effects, important in metals, can be incorporated with a computation requirement similar to pair potentials. Cross interactions between different types of atoms and groups are here approximated by the Lennard Jones potential with Lorentz-Berthelot combining parameters. The aim of this investigation is to describe the dynamics of heterogeneous nucleation and to establish the variables which control the growth and structure formation of clusters on the surface, the nucleation rates, and possible modifications of the substrate during condensation. For this purpose, different conditions of the saturation of the vapor phase and temperature of the substrate were simulated in each of the systems studied. Stationary nucleation rates in vapor phase and on the surface are obtained from cluster size statistics using the method of Yasuoka and Matsumoto. Different growth mechanisms were observed in for the simulated systems. Argon tends to condense on the surface as two-dimensional islands which finally coalesce as layers on the polymer surface. Consistent with this type of growth the condensation in the regime of low saturated and undersaturated vapors can be explained by a two- dimensional model within the frame of the classical nucleation theory. Platinum clusters condense as three-dimensional islands and partially wet the polymer surface. For the first time the embedding of metal atoms and metal clusters growth into a polymer substrate, as observed in experiments, is attained by large-scale molecular simulations. Depending on their sizes, the platinum clusters can diffuse into the polymer matrix even at temperatures lower than the glass transition of the polymer. The routines used for the simulation and analysis have been specially developed for the systems studied. Among them are NpT and NVT ensemble molecular dynamics simulations for the preparation and equilibration of thin polymer films, simulations of condensation of argon and platinum on polyethylene films. Furthermore routines developed for the analysis of simulation results include the calculation of a) radial distribution functions, torsion angle distributions and density profiles for the characterization of polymers, b) algorithms for the recognition of clusters in bulk and on a surface and c) routines for the visualization of the performed simulations

    Similar works