research

A symbolic sensor for an Antilock brake system of a commercial aircraft

Abstract

The design of a symbolic sensor that identifies thecondition of the runway surface (dry, wet, icy, etc.) during the braking of a commercial aircraft is discussed. The purpose of such a sensor is to generate a qualitative, real-time information about the runway surface to be integrated into a future aircraft Antilock Braking System (ABS). It can be expected that this information can significantly improve the performance of ABS. For the design of the symbolic sensor different classification techniques based upon fuzzy set theory and neural networks are proposed. To develop and to verify theses classification algorithms data recorded from recent braking tests have been used. The results show that the symbolic sensor is able to correctly identify the surface condition. Overall, the application example considered in this paper demonstrates that symbolic information processing using fuzzy logic and neural networks has the potential to provide new functions in control system design. This paper is part of a common research project between E.N.S.I.C.A. and Aerospatiale in France to study the role of the fuzzy set theory for potential applications in future aircraft control systems

    Similar works