CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
Transgenic mice expressing LHX3 transcription factor isoforms in the pituitary: Effects on the gonadotrope axis and sex-specific reproductive disease
Authors
Jesse J. Savage
Rachel D. Mullen
+5 more
Kyle W. Sloop
Stephanie C. Colvin
Sally A. Camper
Craig L. Franklin
Simon J. Rhodes
Publication date
1 July 2007
Publisher
'Wiley'
Doi
Cite
Abstract
The LHX3 transcription factor plays critical roles in pituitary and nervous system development. Mutations in the human LHX3 gene cause severe hormone deficiency diseases. The gene produces two mRNAs which can be translated to three protein isoforms. The LHX3a protein contains a central region with LIM domains and a homeodomain, and a carboxyl terminus with the major transactivation domain. LHX3b is identical to LHX3a except that it has a different amino terminus. M2-LHX3 lacks the amino terminus and LIM domains of LHX3a/b. In vitro experiments have demonstrated these three proteins have different biochemical and gene regulatory properties. Here, to investigate the effects of overexpression of LHX3 in vivo, the alpha glycoprotein subunit ( ΑGSU ) promoter was used to produce LHX3a, LHX3b, and M2-LHX3 in the pituitary glands of transgenic mice. Alpha GSU-beta galactosidase animals were generated as controls. Male ΑGSU-LHX3a and ΑGSU-LHX3b mice are infertile and die at a young age as a result of complications associated with obstructive uropathy including uremia. These animals have a reduced number of pituitary gonadotrope cells, low circulating gonadotropins, and possible sex hormone imbalance. Female ΑGSU-LHX3a and ΑGSU-LHX3b transgenic mice are viable but have reduced fertility. By contrast, ΑGSU-M2-LHX3 mice and control mice expressing beta galactosidase are reproductively unaffected. These overexpression studies provide insights into the properties of LHX3 during pituitary development and highlight the importance of this factor in reproductive physiology. J. Cell. Physiol. 212: 105–117, 2007. © 2007 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/56051/1/21010_ftp.pd
Similar works
Full text
Available Versions
Deep Blue Documents
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:deepblue.lib.umich.edu:202...
Last time updated on 25/05/2012