Distributed multi-vehicle coordinated control via local information exchange

Abstract

This paper describes a distributed coordination scheme with local information exchange for multiple vehicle systems. We introduce second-order consensus protocols that take into account motions of the information states and their derivatives, extending first-order protocols from the literature. We also derive necessary and sufficient conditions under which consensus can be reached in the context of unidirectional information exchange topologies. This work takes into account the general case where information flow may be unidirectional due to sensors with limited fields of view or vehicles with directed, power-constrained communication links. Unlike the first-order case, we show that having a (directed) spanning tree is a necessary rather than a sufficient condition for consensus seeking with second-order dynamics. This work focuses on a formal analysis of information exchange topologies that permit second-order consensus. Given its importance to the stability of the coordinated system, an analysis of the consensus term control gains is also presented, specifically the strength of the information states relative to their derivatives. As an illustrative example, consensus protocols are applied to coordinate the movements of multiple mobile robots. Copyright © 2006 John Wiley & Sons, Ltd.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/56082/1/1147_ftp.pd

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 25/03/2021