With the recent developments in semiconductors and control equipment, Voltage Source Converter based High Voltage Direct Current (VSC-HVDC) has attracted the growing interest of researchers. The use of VSC technology and Pulse Width Modulation (PWM) has a number of potential advantages: short circuit current reduction; rapid and independent control of the active and reactive power, etc. With such highly favourable advantages, VSC-HVDC is definitely going to be a large part of future transmission and distribution systems. HVDC technology based on VSC technology has been an area of growing interest recently because of its suitability in forming a transmission link for transmitting bulk amount of wind power. This thesis deals with the control of VSC-HVDC. The objective of the work is to understand the control structure of the VSC-HVDC system, and establish the tuning criteria for the PI controllers of the converter controllers. A model of a VSC based dc link using PWM Technology is developed. A mathematical model of the control system based on the relationships between voltage and current is described for the VSC. A control system is developed combining an inner current loop controller and outer dc voltage controller. The vector control strategy is studied and corresponding dynamic performance under step changes and system fault is investigated in PSCAD/EMTDC simulation package. The simulation results verify that the model can fulfill bi-directional power transfers, fast response control and that the system has good steady state performance. The controller parameters tuned according to the developed tuning criteria is found to provide acceptable system performances