Location Privacy in the Era of Big Data and Machine Learning

Abstract

Location data of individuals is one of the most sensitive sources of information that once revealed to ill-intended individuals or service providers, can cause severe privacy concerns. In this thesis, we aim at preserving the privacy of users in telecommunication networks against untrusted service providers as well as improving their privacy in the publication of location datasets. For improving the location privacy of users in telecommunication networks, we consider the movement of users in trajectories and investigate the threats that the query history may pose on location privacy. We develop an attack model based on the Viterbi algorithm termed as Viterbi attack, which represents a realistic privacy threat in trajectories. Next, we propose a metric called transition entropy that helps to evaluate the performance of dummy generation algorithms, followed by developing a robust dummy generation algorithm that can defend users against the Viterbi attack. We compare and evaluate our proposed algorithm and metric on a publicly available dataset published by Microsoft, i.e., Geolife dataset. For privacy preserving data publishing, an enhanced framework for anonymization of spatio-temporal trajectory datasets termed the machine learning based anonymization (MLA) is proposed. The framework consists of a robust alignment technique and a machine learning approach for clustering datasets. The framework and all the proposed algorithms are applied to the Geolife dataset, which includes GPS logs of over 180 users in Beijing, China

    Similar works