Optimization of EBSD parameters for ultra-fast characterization

Abstract

Ultra-fast pattern acquisition of electron backscatter diffraction and offline indexing could become a dominant technique over online electron backscatter diffraction to investigate the microstructures of a wide range of materials, especially for in situ experiments or very large scans. However, less attention has been paid to optimize the parameters related to ultra-fast electron backscatter diffraction. The present results show that contamination on a clean and unmounted specimen is not a problem even at step sizes as small as 1 nm at a vacuum degree of 6.1 × 10−5 Pa. There exists an optimum step size at about 50 data acquisition board units. A new and easy method to calculate the effective spatial resolution is proposed. Effective spatial resolution tends to increase slightly as the probe current increases from 10 to 100 nA. The fraction of indexed points decreases slightly as the frame rate increases from 128 patterns per second (pps) to 835 pps by compensating the probe current at the same ratio. The value 96 × 96 is found to be the optimum pattern resolution to obtain optimum speed and image quality. For a fixed position of electron backscatter diffraction detector, the fraction of indexed points as a function of working distance has a maximum value and drops sharply by shortening the working distance and it decreases slowly with increasing the working distance

    Similar works

    Full text

    thumbnail-image