USEFUL MEASURES OF COMPLEXITY: A MODEL OF ASSESSING DEGREE OF COMPLEXITY IN ENGINEERED SYSTEMS AND ENGINEERING PROJECTS

Abstract

Many modern systems are very complex, a reality which can affect their safety and reliability of operations. Systems engineers need new ways to measure problem complexity. This research lays the groundwork for measuring the complexity of systems engineering (SE) projects. This research proposes a project complexity measurement model (PCMM) and associated methods to measure complexity. To develop the PCMM, we analyze four major types of complexity (structural complexity, temporal complexity, organizational complexity, and technological complexity) and define a set of complexity metrics. Through a survey of engineering projects, we also develop project profiles for three types of software projects typically used in the U.S. Navy to provide empirical evidence for the PCMM. The results of our work on these projects show that as a project increases in complexity, the more difficult and expensive it is for a project to meet all requirements and schedules because of changing interactions and dynamics among the project participants and stakeholders. The three projects reveal reduction of project complexity by setting a priority and a baseline in requirements and project scope, concentrating on the expected deliverable, strengthening familiarity of the systems engineering process, eliminating redundant processes, and clarifying organizational roles and decision-making processes to best serve the project teams while also streamlining on business processes and information systems.Civilian, Department of the NavyApproved for public release. Distribution is unlimited

    Similar works