Bayesian Modelling of Tuberculosis Risk Factors in South Africa 2014

Abstract

Background: Although the number of deaths has declined since 2007, Tuberculosis (TB) continues to be the number one cause of death in South Africa. To create a country free of TB, there is need for continued research to explore models that will provide the Department of Health with new interventions.Aim: This study was aimed at identifying the risk factors of active self-reported TB prevalence for South Africa in 2014.Methods: The Frequentist Logistic Regression (FLR) approach was applied on a sample of 19213 individuals taken from the National Income Dynamics Survey (NIDS) wave data. Bayesian analysis with non-informative priors were used to model Wave 1 to 3 data and elicitation of the obtained posterior density parameters by averaging done to obtain the informative priors used to model wave 4. The wave 4 results obtained under the two estimation approaches were compared as well as the results for non-informative and informative priors.Results: The findings show that self-reported TB prevalence is higher than the reported 1%, Human Immuno Deficiency Virus (HIV) remains a major threat to TB and Eastern Cape is the province mostly affected by TB with Limpopo recording the least prevalence. Poor living conditions and lower socio-economic conditions continue to be drivers of TB whilst English illiteracy, lack of Secondary/Tertiary education, alcohol consumption, marital status, gender and age groups also influence TB progression to disease. FLR yielded similar results to Bayesian with non-informative priors whilst the results are more precise for informative priors.Conclusion: This study identified individuals and communities at risk of developing active TB disease in South Africa

    Similar works