Muscle Activated 3D Printed Prosthetic Arm

Abstract

Due to the rapid growth of children and the cost of myoelectric technology, children are not given the same opportunities to use myoelectric prosthetics as adults. The Muscle Activated Prosthesis (MAP) team seeks to reconcile this by creating an affordable, trans-radial, myoelectric prosthesis that utilizes the flexibility of 3D printing technology for a fourteen-year-old congenital amputee named Lily. The MAP team has completed the design and prototype of a myoelectric prosthesis with a material cost of approximately 1,000asopposedtothe1,000 as opposed to the 10,000-$20,000 cost of clinically accepted myoelectric prosthetic upper limbs. The 3D printed prosthetic arm prototype incorporates electromyography (EMG) electrodes, a motor and tendon system, an open-source prosthetic hand design, a custom printed circuit board (PCB), and lithium-ion battery power. The opening and closing of the prosthetic hand is controlled by the myoelectric signals from the user’s forearm contractions which can be tested by the team using our adaptive prosthetic attachment. All these components result in an affordable prosthetic that has the potential for customization and adaptation to different sized limbs. Funding for this work provided by The Collaboratory for Strategic Partnerships and Applied Research.https://mosaic.messiah.edu/engr2022/1009/thumbnail.jp

    Similar works