The problem considered in this paper is to locate storage containers while a set of container storage and retrieval requests are sequenced. Two automated cranes stack and retrieve containers in a single block of a yard. The cranes cannot pass each other and must be separated by a safety distance. Storage containers are initially located at the seaside and land side input/output (I/O) points of the block. Each must be stacked in a specific location of the block, selected from a set of open locations suitable for stacking the storage container. Retrieval containers are initially located in the block and must be delivered to the I/O points. Due to the importance and acceptable waiting times of different modes of transport, requests have different priorities. The problem is modeled as a multiple asymmetric generalized traveling salesman problem with precedence constraints. The objective is to minimize the make span. We have developed an adaptive large neighborhood search heuristic to quickly compute near-optimal solutions. The numerical experiments show that the solution method can obtain near-optimal solutions