Electronic Structure of Cytochrome P450

Abstract

The optical properties of P450 have been investigated by means of polarized absorption spectroscopy of single crystals of camphor- bound P450CAM in the oxidized, reduced, and CO-reduced states, and iterative extended Ruckel (IEH) calculations. The heme chromophores are orientated such that transitions polarized in the heme plane (x,y-polarized) can be readily distinguished from transitions polarized perpendicular to the heme plane (z-polarized) . High spin oxidized P450 exhibits two broad z-polarized bands, at 567 and 323 nm. IEH calculations suggest that these bands arise from cysteine mercaptide sulfur-to-iron charge transfer transitions. High spin reduced P450 has no z-polarized bands. IEH calculations suggest that loss of these bands occurs because the cysteine sulfur is protonated to a mercaptan. Low spin CO-P450 has an intense x,y-polarized band at 363 nm. This transition, assigned as a mercaptide sulfur-to-porphyrin charge transfer transition, has the correct symmetry to mix with the Soret and may cause the anomalous red shift of the Soret

    Similar works