research

Newton-MR: Inexact Newton Method With Minimum Residual Sub-problem Solver

Abstract

We consider a variant of inexact Newton Method, called Newton-MR, in which the least-squares sub-problems are solved approximately using Minimum Residual method. By construction, Newton-MR can be readily applied for unconstrained optimization of a class of non-convex problems known as invex, which subsumes convexity as a sub-class. For invex optimization, instead of the classical Lipschitz continuity assumptions on gradient and Hessian, Newton-MR's global convergence can be guaranteed under a weaker notion of joint regularity of Hessian and gradient. We also obtain Newton-MR's problem-independent local convergence to the set of minima. We show that fast local/global convergence can be guaranteed under a novel inexactness condition, which, to our knowledge, is much weaker than the prior related works. Numerical results demonstrate the performance of Newton-MR as compared with several other Newton-type alternatives on a few machine learning problems.Comment: 35 page

    Similar works

    Full text

    thumbnail-image

    Available Versions