CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
Visfatin reduces gap junction mediated cell-to-cell communication in proximal tubule-derived epithelial cells
Authors
Claire E. Hills
Michael I. Kerr
Paul E. Squires
Mark J. Wall
Publication date
1 January 2013
Publisher
'S. Karger AG'
Doi
Cite
Abstract
Background/Aims: In the current study we examined if the adipocytokine, visfatin, alters connexin-mediated intercellular communication in proximal tubule-derived epithelial cells. Methods: The effects of visfatin (10-200ng/mL) on cell viability and cytotoxicity in HK2-cells were assessed by MTT, crystal violet and lactate dehydrogenase assays. Western blot analysis was used to confirm expression of Cx26, Cx40 and Cx43. The effect of visfatin (10-200ng/mL) on TGF-β1 secretion was confirmed by ELISA, and the effects of both TGF-β1 (2-10ng/mL) and visfatin (10-200ng/mL) on connexin expression were assessed by western blot. Functional intercellular communication was determined using transfer of Lucifer Yellow and paired-whole cell patch clamp electrophysiology. Results: In low glucose (5mM), visfatin (10-200ng/mL) did not affect membrane integrity, cytotoxicity or cell viability at 48hrs, but did evoke a concentration-dependent reduction in Cx26 and Cx43 expression. The expression of Cx40 was unaffected. At 48hrs, visfatin (10-200ng/mL) increased the secretion of TGF-β1 and the visfatin-evoked changes in connexin expression were mimicked by exogenous application of the pro-fibrotic cytokine (2-10ng/ml). Visfatin reduced dye transfer between coupled cells and decreased functional conductance, with levels falling by 63% as compared to control. Although input resistance was increased following visfatin treatment by 166%, the change was not significant as compared to control. The effects of visfatin on Cx-expression and cell-coupling were blocked in the presence of a TGF-β1 specific neutralizing antibody. Conclusions: The adipocytokine visfatin selectively evoked a non-toxic reduction in connexin expression in HK2-cells. The loss in gap-junction associated proteins was mirrored by a loss in functional conductance between coupled cells. Visfatin increased TGF-β secretion and the pattern of change for connexins expression was mimicked by exogenous application of TGF-β1. The effect of visfatin on Cx-expression and dye transfer were negated in the presence of a TGF-β1 neutralising antibody. These data suggest that visfatin reduces connexin-mediated intercellular communication in proximal tubule-derived epithelial cells via a TGF-β dependent pathway. © 2013 S. Karger AG, Base
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Warwick Research Archives Portal Repository
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:wrap.warwick.ac.uk:57054
Last time updated on 10/10/2013
Directory of Open Access Journals
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:doaj.org/article:f77a76a26...
Last time updated on 14/10/2017
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1159%2F000354519
Last time updated on 01/04/2019