A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007

Abstract

We present the results of the fi rst search for gravitational wave bursts associated with high energy neutrinos. Together, these messengers could reveal new, hidden sources that are not observed by conventional photon astronomy, particularly at high energy. Our search uses neutrinos detected by the underwater neutrino telescope ANTARES in its 5 line con guration during the period January - September 2007, which coincided with the fifth and fi rst science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed for candidate gravitational-wave signals coincident in time and direction with the neutrino events. No signi cant coincident events were observed. We place limits on the density of joint high energy neutrino - gravitational wave emission events in the local universe, and compare them with densities of merger and core-collapse events.The authors also acknowledge the financial support of the funding agencies for the construction and operation of the ANTARES neutrino telescope: Centre National de la Recherche Scientifique (CNRS), Commissariat a l'energie atomique et aux energies alternatives (CEA), Agence National de la Recherche (ANR), Commission Europeenne (FEDER fund and Marie Curie Program), Region Alsace (contrat CPER), Region Provence-Alpes-Cote d'Azur, Departement du Var and Ville de La Seyne-sur-Mer, France; Bundesministerium fur Bildung und Forschung (BMBF), Germany; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Stichting voor Fundamenteel Onderzoek der Materie (FOM), Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO), the Netherlands; Council of the President of the Russian Federation for young scientists and leading scientific schools supporting grants, Russia; National Authority for Scientific Research (ANCS), Romania; Ministerio de Ciencia e Innovacion (MICINN), Prometeo of Generalitat Valenciana (GVA) and Multi-Dark, Spain. They also acknowledge the technical support of Ifremer, AIM and Foselev Marine for the sea operation and the CC-IN2P3 for the computing facilities. This publication has been assigned LIGO Document Number LIGO-P1200006.Adrián Martínez, S.; Ardid Ramírez, M.; Bou Cabo, M.; Ferri García, M.; Larosa, G.; Martínez Mora, JA.; Astraatmadja, T.... (2013). A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007. Journal of Cosmology and Astroparticle Physics. 2013(6):1-39. https://doi.org/10.1088/1475-7516/2013/06/008S13920136Abadie, J., Abbott, B. P., Abbott, R., Accadia, T., Acernese, F., Adhikari, R., … Ceron, E. A. (2010). SEARCH FOR GRAVITATIONAL-WAVE INSPIRAL SIGNALS ASSOCIATED WITH SHORT GAMMA-RAY BURSTS DURING LIGO’S FIFTH AND VIRGO’S FIRST SCIENCE RUN. The Astrophysical Journal, 715(2), 1453-1461. doi:10.1088/0004-637x/715/2/1453Abadie, J., Abbott, B. P., Abbott, R., Abernathy, M., Accadia, T., Acernese, F., … Allen, B. (2012). Publisher’s Note: Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1 [Phys. Rev. D82, 102001 (2010)]. Physical Review D, 85(8). doi:10.1103/physrevd.85.089903Abadie, J., Abbott, B. P., Abbott, R., Abernathy, M., Accadia, T., Acernese, F., … Allen, B. (2010). Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors. Classical and Quantum Gravity, 27(17), 173001. doi:10.1088/0264-9381/27/17/173001Abadie, J., Abbott, B. P., Abbott, R., Abernathy, M., Accadia, T., Acernese, F., … Allen, B. (2011). SEARCH FOR GRAVITATIONAL WAVE BURSTS FROM SIX MAGNETARS. The Astrophysical Journal, 734(2), L35. doi:10.1088/2041-8205/734/2/l35Abadie, J., Abbott, B. P., Abbott, R., Abbott, T. D., Abernathy, M., Accadia, T., … Affeldt, C. (2012). All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run. Physical Review D, 85(12). doi:10.1103/physrevd.85.122007Abadie, J., Abbott, B. P., Abbott, R., Abbott, T. D., Abernathy, M., Accadia, T., … Affeldt, C. (2012). SEARCH FOR GRAVITATIONAL WAVES ASSOCIATED WITH GAMMA-RAY BURSTS DURING LIGO SCIENCE RUN 6 AND VIRGO SCIENCE RUNS 2 AND 3. The Astrophysical Journal, 760(1), 12. doi:10.1088/0004-637x/760/1/12Abadie, J., Abbott, B. P., Abbott, R., Abbott, T. D., Abernathy, M., Accadia, T., … Affeldt, C. (2012). Search for gravitational waves from low mass compact binary coalescence in LIGO’s sixth science run and Virgo’s science runs 2 and 3. Physical Review D, 85(8). doi:10.1103/physrevd.85.082002Abbasi, R., Abdou, Y., Abu-Zayyad, T., Adams, J., Aguilar, J. A., Ahlers, M., … Baker, M. (2010). SEARCH FOR MUON NEUTRINOS FROM GAMMA-RAY BURSTS WITH THE IceCube NEUTRINO TELESCOPE. The Astrophysical Journal, 710(1), 346-359. doi:10.1088/0004-637x/710/1/346Abbasi, R., Abdou, Y., Abu-Zayyad, T., Adams, J., Aguilar, J. A., Ahlers, M., … Baker, M. (2011). Erratum: Constraints on the extremely-high energy cosmic neutrino flux with the IceCube 2008-2009 data [Phys. Rev. D83, 092003 (2011)]. Physical Review D, 84(7). doi:10.1103/physrevd.84.079902Abbasi, R., Abdou, Y., Abu-Zayyad, T., Adams, J., Aguilar, J. A., Ahlers, M., … Baker, M. (2011). Limits on Neutrino Emission from Gamma-Ray Bursts with the 40 String IceCube Detector. Physical Review Letters, 106(14). doi:10.1103/physrevlett.106.141101(2012). An absence of neutrinos associated with cosmic-ray acceleration in γ-ray bursts. Nature, 484(7394), 351-354. doi:10.1038/nature11068Abbasi, R., Abdou, Y., Abu-Zayyad, T., Ackermann, M., Adams, J., Aguilar, J. A., … Andeen, K. (2012). Searching for soft relativistic jets in core-collapse supernovae with the IceCube optical follow-up program. Astronomy & Astrophysics, 539, A60. doi:10.1051/0004-6361/201118071Abbasi, R., Abdou, Y., Abu-Zayyad, T., Adams, J., Aguilar, J. A., Ahlers, M., … Baker, M. (2011). TIME-DEPENDENT SEARCHES FOR POINT SOURCES OF NEUTRINOS WITH THE 40-STRING AND 22-STRING CONFIGURATIONS OF ICECUBE. The Astrophysical Journal, 744(1), 1. doi:10.1088/0004-637x/744/1/1Abbott, B., Abbott, R., Adhikari, R., Ajith, P., Allen, B., Allen, G., … Arain, M. A. (2008). Beating the Spin-Down Limit on Gravitational Wave Emission from the Crab Pulsar. The Astrophysical Journal, 683(1), L45-L49. doi:10.1086/591526Abbott, B., Abbott, R., Adhikari, R., Ajith, P., Allen, B., Allen, G., … Arain, M. A. (2008). Search for Gravitational-Wave Bursts from Soft Gamma Repeaters. Physical Review Letters, 101(21). doi:10.1103/physrevlett.101.211102Abbott, B., Abbott, R., Adhikari, R., Agresti, J., Ajith, P., Allen, B., … Arain, M. (2008). Search for gravitational waves associated with 39 gamma-ray bursts using data from the second, third, and fourth LIGO runs. Physical Review D, 77(6). doi:10.1103/physrevd.77.062004Abbott, B. P., Abbott, R., Adhikari, R., Ajith, P., Allen, B., Allen, G., … Arain, M. A. (2009). First LIGO search for gravitational wave bursts from cosmic (super)strings. Physical Review D, 80(6). doi:10.1103/physrevd.80.062002Abbott, B. P., Abbott, R., Adhikari, R., Ajith, P., Allen, B., Allen, G., … Arain, M. A. (2009). LIGO: the Laser Interferometer Gravitational-Wave Observatory. Reports on Progress in Physics, 72(7), 076901. doi:10.1088/0034-4885/72/7/076901Abbott, B. P., Abbott, R., Adhikari, R., Ajith, P., Allen, B., Allen, G., … Arain, M. A. (2009). STACKED SEARCH FOR GRAVITATIONAL WAVES FROM THE 2006 SGR 1900+14 STORM. The Astrophysical Journal, 701(2), L68-L74. doi:10.1088/0004-637x/701/2/l68Abbott, B. P., Abbott, R., Acernese, F., Adhikari, R., Ajith, P., Allen, B., … Anderson, S. B. (2010). SEARCH FOR GRAVITATIONAL-WAVE BURSTS ASSOCIATED WITH GAMMA-RAY BURSTS USING DATA FROM LIGO SCIENCE RUN 5 AND VIRGO SCIENCE RUN 1. The Astrophysical Journal, 715(2), 1438-1452. doi:10.1088/0004-637x/715/2/1438Accadia, T., Acernese, F., Alshourbagy, M., Amico, P., Antonucci, F., Aoudia, S., … Astone, P. (2012). Virgo: a laser interferometer to detect gravitational waves. Journal of Instrumentation, 7(03), P03012-P03012. doi:10.1088/1748-0221/7/03/p03012Acernese, F., Alshourbagy, M., Amico, P., Antonucci, F., Aoudia, S., Astone, P., … Barone, F. (2008). Status of Virgo. Classical and Quantum Gravity, 25(11), 114045. doi:10.1088/0264-9381/25/11/114045Achterberg, A., Ackermann, M., Adams, J., Ahrens, J., Andeen, K., Atlee, D. W., … Bartelt, M. (2006). Limits on the High-Energy Gamma and Neutrino Fluxes from the SGR 1806-20 Giant Flare of 27 December 2004 with the AMANDA-II Detector. Physical Review Letters, 97(22). doi:10.1103/physrevlett.97.221101Adrián-Martínez, S., Al Samarai, I., Albert, A., André, M., Anghinolfi, M., Anton, G., … Aubert, J.-J. (2012). Search for neutrino emission from gamma-ray flaring blazars with the ANTARES telescope. Astroparticle Physics, 36(1), 204-210. doi:10.1016/j.astropartphys.2012.06.001Adrián-Martínez, S., Al Samarai, I., Albert, A., André, M., Anghinolfi, M., Anton, G., … Aubert, J.-J. (2012). SEARCH FOR COSMIC NEUTRINO POINT SOURCES WITH FOUR YEARS OF DATA FROM THE ANTARES TELESCOPE. The Astrophysical Journal, 760(1), 53. doi:10.1088/0004-637x/760/1/53Adrián-Martínez, S., Al Samarai, I., Albert, A., André, M., Anghinolfi, M., Anton, G., … Aubert, J.-J. (2012). Measurement of atmospheric neutrino oscillations with the ANTARES neutrino telescope. Physics Letters B, 714(2-5), 224-230. doi:10.1016/j.physletb.2012.07.002Ageron, M., Aguilar, J. A., Al Samarai, I., Albert, A., Ameli, F., André, M., … Ardid, M. (2011). ANTARES: The first undersea neutrino telescope. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 656(1), 11-38. doi:10.1016/j.nima.2011.06.103Aglietta, M., Antonioli, P., Bari, G., Castagnoli, C., Fulgione, W., Galeotti, P., … Zichichi, A. (2004). Search for low energy ν in correlation with the 8 events observed by the EXPLORER and NAUTILUS detectors in 2001. Astronomy & Astrophysics, 421(2), 399-405. doi:10.1051/0004-6361:20040244Aguilar, J. A., Albert, A., Ameli, F., Amram, P., Anghinolfi, M., Anton, G., … Aubert, J.-J. (2005). Study of large hemispherical photomultiplier tubes for the ANTARES neutrino telescope. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 555(1-2), 132-141. doi:10.1016/j.nima.2005.09.035Aguilar, J. A., Albert, A., Ameli, F., Anghinolfi, M., Anton, G., Anvar, S., … Basa, S. (2007). The data acquisition system for the ANTARES neutrino telescope. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 570(1), 107-116. doi:10.1016/j.nima.2006.09.098Aguilar, J. A., Albert, A., Anton, G., Anvar, S., Ardid, M., Assis Jesus, A. C., … Baret, B. (2010). Zenith distribution and flux of atmospheric muons measured with the 5-line ANTARES detector. Astroparticle Physics, 34(3), 179-184. doi:10.1016/j.astropartphys.2010.07.001Aguilar, J. A., Samarai, I. A., Albert, A., André, M., Anghinolfi, M., Anton, G., … Astraatmadja, T. (2011). Search for a diffuse flux of high-energy νμ with the ANTARES neutrino telescope. Physics Letters B, 696(1-2), 16-22. doi:10.1016/j.physletb.2010.11.070Aguilar, J. A., Al Samarai, I., Albert, A., André, M., Anghinolfi, M., Anton, G., … Astraatmadja, T. (2011). A fast algorithm for muon track reconstruction and its application to the ANTARES neutrino telescope. Astroparticle Physics, 34(9), 652-662. doi:10.1016/j.astropartphys.2011.01.003Alvarez-Muñiz, J., & Halzen, F. (2001). 1020 eVcosmic-ray and particle physics with kilometer-scale neutrino telescopes. Physical Review D, 63(3). doi:10.1103/physrevd.63.037302Amram, P., Anghinolfi, M., Anvar, S., Ardellier-Desages, F. ., Aslanides, E., Aubert, J.-J., … Battaglieri, M. (2003). Sedimentation and fouling of optical surfaces at the ANTARES site. Astroparticle Physics, 19(2), 253-267. doi:10.1016/s0927-6505(02)00202-5Anchordoqui, L., & Halzen, F. (2006). IceHEP high energy physics at the South Pole. Annals of Physics, 321(11), 2660-2716. doi:10.1016/j.aop.2005.11.015Ando, S., & Beacom, J. F. (2005). Revealing the Supernova–Gamma-Ray Burst Connection with TeV Neutrinos. Physical Review Letters, 95(6). doi:10.1103/physrevlett.95.061103Aso, Y., Márka, Z., Finley, C., Dwyer, J., Kotake, K., & Márka, S. (2008). Search method for coincident events from LIGO and IceCube detectors. Classical and Quantum Gravity, 25(11), 114039. doi:10.1088/0264-9381/25/11/114039ATHAR, H., KIM, C. S., & LEE, J. (2006). INTRINSIC AND OSCILLATED ASTROPHYSICAL NEUTRINO FLAVOR RATIOS REVISITED. Modern Physics Letters A, 21(13), 1049-1065. doi:10.1142/s021773230602038xBaret, B., Bartos, I., Bouhou, B., Corsi, A., Palma, I. D., Donzaud, C., … Sutton, P. (2011). Bounding the time delay between high-energy neutrinos and gravitational-wave transients from gamma-ray bursts. Astroparticle Physics, 35(1), 1-7. doi:10.1016/j.astropartphys.2011.04.001Barthelmy, S. D., Barbier, L. M., Cummings, J. R., Fenimore, E. E., Gehrels, N., Hullinger, D., … Tueller, J. (2005). The Burst Alert Telescope (BAT) on the SWIFT Midex Mission. Space Science Reviews, 120(3-4), 143-164. doi:10.1007/s11214-005-5096-3Bartos, I., Finley, C., Corsi, A., & Márka, S. (2011). Observational Constraints on Multimessenger Sources of Gravitational Waves and High-Energy Neutrinos. Physical Review Letters, 107(25). doi:10.1103/physrevlett.107.251101Bazin, G., Palanque-Delabrouille, N., Rich, J., Ruhlmann-Kleider, V., Aubourg, E., Le Guillou, L., … Walker, E. S. (2009). The core-collapse rate from the Supernova Legacy Survey. Astronomy & Astrophysics, 499(3), 653-660. doi:10.1051/0004-6361/200911847Berezinsky, V., Sabancilar, E., & Vilenkin, A. (2011). Extremely high energy neutrinos from cosmic strings. Physical Review D, 84(8). doi:10.1103/physrevd.84.085006Bhattacharjee, P. (1989). Cosmic strings and ultrahigh-energy cosmic rays. Physical Review D, 40(12), 3968-3975. doi:10.1103/physrevd.40.3968Braccini, S., Barsotti, L., Bradaschia, C., Cella, G., Virgilio, A. D., Ferrante, I., … Gennai, A. (2005). Measurement of the seismic attenuation performance of the VIRGO Superattenuator. Astroparticle Physics, 23(6), 557-565. doi:10.1016/j.astropartphys.2005.04.002Brady, P. R., Creighton, J. D. E., & Wiseman, A. G. (2004). Upper limits on gravitational-wave signals based on loudest events. Classical and Quantum Gravity, 21(20), S1775-S1781. doi:10.1088/0264-9381/21/20/020Bromberg, O., Nakar, E., & Piran, T. (2011). ARE LOW-LUMINOSITY GAMMA-RAY BURSTS GENERATED BY RELATIVISTIC JETS? The Astrophysical Journal, 739(2), L55. doi:10.1088/2041-8205/739/2/l55Burrows, A., Dessart, L., Livne, E., Ott, C. D., & Murphy, J. (2007). Simulations of Magnetically Driven Supernova and Hypernova Explosions in the Context of Rapid Rotation. The Astrophysical Journal, 664(1), 416-434. doi:10.1086/519161Chapman, R., Tanvir, N. R., Priddey, R. S., & Levan, A. J. (2007). How common are long gamma-ray bursts in the local Universe? Monthly Notices of the Royal Astronomical Society: Letters, 382(1), L21-L25. doi:10.1111/j.1745-3933.2007.00381.xChatterji, S., Lazzarini, A., Stein, L., Sutton, P. J., Searle, A., & Tinto, M. (2006). Coherent network analysis technique for discriminating gravitational-wave bursts from instrumental noise. Physical Review D, 74(8). doi:10.1103/physrevd.74.082005Corsi, A., & Mészáros, P. (2009). GAMMA-RAY BURST AFTERGLOW PLATEAUS AND GRAVITATIONAL WAVES: MULTI-MESSENGER SIGNATURE OF A MILLISECOND MAGNETAR? The Astrophysical Journal, 702(2), 1171-1178. doi:10.1088/0004-637x/702/2/1171Corsi, A., & Owen, B. J. (2011). Maximum gravitational-wave energy emissible in magnetar flares. Physical Review D, 83(10). doi:10.1103/physrevd.83.104014Creighton, J. D. E., & Anderson, W. G. (2011). Gravitational-Wave Physics and Astronomy. doi:10.1002/9783527636037Damour, T., & Vilenkin, A. (2000). Gravitational Wave Bursts from Cosmic Strings. Physical Review Letters, 85(18), 3761-3764. doi:10.1103/physrevlett.85.3761Damour, T., & Vilenkin, A. (2001). Gravitational wave bursts from cusps and kinks on cosmic strings. Physical Review D, 64(6). doi:10.1103/physrevd.64.064008Davies, M. B., King, A., Rosswog, S., & Wynn, G. (2002). Gamma-Ray Bursts, Supernova Kicks, and Gravitational Radiation. The Astrophysical Journal, 579(2), L63-L66. doi:10.1086/345288Dietz, A., Fotopoulos, N., Singer, L., & Cutler, C. (2013). Outlook for detection of GW inspirals by GRB-triggered searches in the advanced detector era. Physical Review D, 87(6). doi:10.1103/physrevd.87.064033Dimmelmeier, H., Ott, C. D., Marek, A., & Janka, H.-T. (2008). Gravitational wave burst signal from core collapse of rotating stars. Physical Review D, 78(6). doi:10.1103/physrevd.78.064056Faber, J. A., & Rasio, F. A. (2012). Binary Neutron Star Mergers. Living Reviews in Relativity, 15(1). doi:10.12942/lrr-2012-8Fryer, C. L., Holz, D. E., & Hughes, S. A. (2002). Gravitational Wave Emission from Core Collapse of Massive Stars. The Astrophysical Journal, 565(1), 430-446. doi:10.1086/324034Fryer, C. L., & New, K. C. B. (2011). Gravitational Waves from Gravitational Collapse. Living Reviews in Relativity, 14(1). doi:10.12942/lrr-2011-1Gehrels, N., Ramirez-Ruiz, E., & Fox, D. B. (2009). Gamma-Ray Bursts in theSwiftEra. Annual Review of Astronomy and Astrophysics, 47(1), 567-617. doi:10.1146/annurev.astro.46.060407.145147Gehrels, N. (2004). The Swift Gamma-Ray Burst Mission. AIP Conference Proceedings. doi:10.1063/1.1810924Gill, R., & Heyl, J. S. (2010). On the trigger mechanisms for soft gamma-ray repeater giant flares. Monthly Notices of the Royal Astronomical Society, 407(3), 1926-1932. doi:10.1111/j.1365-2966.2010.17038.xGorham, P. W., Allison, P., Baughman, B. M., Beatty, J. J., Belov, K., Besson, D. Z., … Wang, Y. (2010). Observational constraints on the ultrahigh energy cosmic neutrino flux from the second flight of the ANITA experiment. Physical Review D, 82(2). doi:10.1103/physrevd.82.022004Guetta, D., & Piran, T. (2006). The BATSE-Swift luminosity and redshift distributions of short-duration GRBs. Astronomy & Astrophysics, 453(3), 823-828. doi:10.1051/0004-6361:20054498Guetta, D., Piran, T., & Waxman, E. (2005). The Luminosity and Angular Distributions of Long‐Duration Gamma‐Ray Bursts. The Astrophysical Journal, 619(1), 412-419. doi:10.1086/423125Guetta, D., & Stella, L. (2008). Short γ-ray bursts and gravitational waves from dynamically formed merging binaries. Astronomy & Astrophysics, 498(2), 329-333. doi:10.1051/0004-6361:200810493Guetta, D., & Della Valle, M. (2007). On the Rates of Gamma-Ray Bursts and Type Ib/c Supernovae. The Astrophysical Journal, 657(2), L73-L76. doi:10.1086/511417Guetta, D., Hooper, D., Alvarez-Muñiz, J., Halzen, F., & Reuveni, E. (2004). Neutrinos from individual gamma-ray bursts in the BATSE catalog. Astroparticle Physics, 20(4), 429-455. doi:10.1016/s0927-6505(03)00211-1Harry, G. M. (2010). Advanced LIGO: the next generation of gravitational wave detectors. Classical and Quantum Gravity, 27(8), 084006. doi:10.1088/0264-9381/27/8/084006He, H.-N., Liu, R.-Y., Wang, X.-Y., Nagataki, S., Murase, K., & Dai, Z.-G. (2012). ICECUBE NONDETECTION OF GAMMA-RAY BURSTS: CONSTRAINTS ON THE FIREBALL PROPERTIES. The Astrophysical Journal, 752(1), 29. doi:10.1088/0004-637x/752/1/29Hernández-Rey, J. J. (2009). Neutrino telescopes in the Mediterranean sea. Journal of Physics: Conference Series, 171, 012047. doi:10.1088/1742-6596/171/1/012047Hill, C. T., Schramm, D. N., & Walker, T. P. (1987). Ultra-high-energy cosmic rays from superconducting cosmic strings. Physical Review D, 36(4), 1007-1016. doi:10.1103/physrevd.36.1007Horiuchi, S., & Ando, S. (2008). High-energy neutrinos from reverse shocks in choked and successful relativistic jets. Physical Review D, 77(6). doi:10.1103/physrevd.77.063007Hümmer, S., Baerwald, P., & Winter, W. (2012). Neutrino Emission from Gamma-Ray Burst Fireballs, Revised. Physical Review Letters, 108(23). doi:10.1103/physrevlett.108.231101Hurley, K. (2011). Soft gamma repeaters. Advances in Space Research, 47(8), 1326-1331. doi:10.1016/j.asr.2010.03.001Ioka, K. (2001). Magnetic deformation of magnetars for the giant flares of the soft gamma-ray repeaters. Monthly Notices of the Royal Astronomical Society, 327(2), 639-662. doi:10.1046/j.1365-8711.2001.04756.xIoka, K., Razzaque, S., Kobayashi, S., & Meszaros, P. (2005). TeV‐PeV Neutrinos from Giant Flares of Magnetars and the Case of SGR 1806−20. The Astrophysical Journal, 633(2), 1013-1017. doi:10.1086/466514Khokhlov, A. M., Höflich, P. A., Oran, E. S., Wheeler, J. C., Wang, L., & Chtchelkanova, A. Y. (1999). Jet-induced Explosions of Core Collapse Supernovae. The Astrophysical Journal, 524(2), L107-L110. doi:10.1086/312305Kibble, T. W. B. (1976). Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General, 9(8), 1387-1398. doi:10.1088/0305-4470/9/8/029Kiuchi, K., Shibata, M., Montero, P. J., & Font, J. A. (2011). Gravitational Waves from the Papaloizou-Pringle Instability in Black-Hole-Torus Systems. Physical Review Letters, 106(25). doi:10.1103/physrevlett.106.251102Kobayashi, S., & Meszaros, P. (2003). Gravitational Radiation from Gamma‐Ray Burst Progenitors.

    Similar works

    Full text

    thumbnail-image

    Available Versions