Recently, finite rate of innovation methods have been successfully applied to achieve low sampling rates in many areas, such as for ultrasound and radio signals. However, to the best of our knowledge, there are no journal publications applying this to real terahertz signals. In this work, we mathematically describe a finite rate of innovation method applied specifically to terahertz signals both experimentally and in simulation. To demonstrate our method, we applied it to randomized simulated signals with and without the presence of noise and to simple experimental measurements. We found excellent agreement between the simulated signals and those recreated based on results from our method, with this success also being replicated experimentally. These results were obtained at relatively low sampling rates, compared to standard methods, which is a key advantage to using a finite rate of innovation method as it allows for faster data acquisition and signal processing