PARALLELIZING TIME-SERIES SESSION DATA ANALYSIS WITH A TYPE-ERASURE BASED DSEL

Abstract

The Science Information Network (SINET) is a Japanese academic backbone network.  SINET consists of more than 800 universities and research institutions.  In the operation of a huge academic backbone network, more flexible querying technology is required to cope with massive time series session data and analysis of sophisticated cyber-attacks. This paper proposes a parallelizing DSEL (Domain Specific Embedded Language) processing for huge time-series session data. In our DESL, the function object is implemented by type erasure for constructing internal DSL for processing time-series data. Type erasure enables our parser to store function pointer and function object into the same *void type with class templates. We apply to scatter/gather pattern for concurrent DSEL parsing. Each thread parses DSEL to extract the tuple timestamp, source IP, and destination IP in the gather phase. In the scattering phase, we use a concurrent hash map to handle multiple thread outputs with our DSEL. In the experiment, we have measured the elapsed time in parsing and inserting IPv4 address and timestamp data format ranging from 1,000 to 50,000 lines with 24-row items. We have also measured CPU idle time in processing 100,000,000 lines of session data with 5, 10 and 20 multiple threads. It has been turned out that the proposed method can work in feasible computing time in both cases

    Similar works