Kollajen temelli yapay menisküs: tasarım ve uygulaması

Abstract

Meniscus is a wedge shaped structure, with a convex base attached to a flat tibial surface, and with a concave femoral surface, on which femur and tibia articulate. It has several functions including joint lubrication, shock absorption, load transmission and joint stability. Various methods were tried to treat meniscal tears but each has its own drawbacks. Tissue engineering seems to be a promising solution that avoids all the problems associated with the other approaches. In this study, a three dimensional (3D) collagen-based structure was prepared by tissue engineering to mimic the natural human meniscus. Three different foams prepared under different conditions were combined and nano/microfibrous layers were placed in between them. To mimic the properties of the natural tissue, the top layer was composed of collagen-chondroitin sulfate-hyaluronic acid (Coll-CS-HA) prepared by freezing at -20ºC followed by lyophilization. The middle and bottom layers were made with just collagen after freezing at -20ºC and -80ºC, respectively and lyophilization. Aligned nano/microfibers were prepared using collagen-poly(L-lactic-co-glycolic acid (Coll-PLGA). Various crosslinking procedures such as 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide (EDC/NHS), genipin (GP), glutaraldehyde (GLU) either alone or in combination with dehydrothermal treatment (DHT) were used and based on both compressive and tensile properties, the best crosslinker was chosen to be DHT+EDC/NHS. Mechanical properties (compressive, tensile and shear) of the dry foams and the final 3D construct were evaluated. The highest mechanical properties were obtained with the 3D construct. Then all these foams and the 3D construct were seeded with human fibrochondrocytes to study the cell behavior such as attachment, proliferation, and extracellular matrix (ECM) and glucosaminoglycan (GAG) production. Furthermore, the influence of cell seeding on the compressive properties of wet individual foams and the 3D construct was observed. As expected, the highest cell proliferation and compressive properties were obtained with the 3D construct. Finally, the 3D constructs, seeded with fibrochondrocytes, were implanted in New Zealand rabbits after meniscectomy. The initial microscopical examination show that the 3D construct has a significant potential as a meniscus substitute.Ph.D. - Doctoral Progra

    Similar works