Nanotechnology based approaches to fight against COVID 19 infection

Abstract

Nanotechnology, the study of nanoparticles, is emerging as a leading pharmaceutical technique. It is used in various fields of drug delivery, bioimaging, biomedical diagnosis, tissue engineering, production of formulation, medical devices and many others, thereby playing a key role in future pharmaceutical and pharmacotherapy production. The ability to modify molecules and supramolecular frameworks for the development of devices or substances with altered functions or features is the most significant benefit of this technology. Nanoscience provides a solution to the spread of COVID-19 infection by aiding in its detection, including surface antiviral coatings, protection of facemasks, increased personal protection services, airborne filtration and therapeutic administration. Addressing the numerous clinical and wellbeing issues that have arisen as a result of the global dissemination of coronavirus infection. This study explores in depth the different uses of this technology in combating the pandemic situation of COVID-19 with an insight into the creation of a chemically engineered nanodevice that prevents its proliferation in the host cells. Low medication loading capability, low loading performance, and poor ability to monitor the delivery of sizes are the only problems with existing approaches. The use of nanotechnology, such as nanopatterning, could allow high loading efficiency and highly homogeneous particle sizes to generate nano / micro particles

    Similar works