3D Least Squares Based Surface Reconstruction

Abstract

Diese Arbeit präsentiert einen vollständig dreidimensionalen (3D) Algorithmus zur Oberflächenrekonstruktion aus Bildfolgen mit großer Basis. Die rekonstruierten Oberflächen werden durch Dreiecksgitter beschrieben, was eine einfache Integration von Bild- und Geometrie-basierten Bedingungen ermöglicht. Die vorgestellte Arbeit erweitert den erfolgreichen Ansatz von Heipke (1990) zur 2,5D Rekonstruktion zur vollständigen 3D Rekonstruktion. Verdeckung und nicht-Lambertsche Spiegelung werden durch robuste kleinste Quadrate Ausgleichung zur Schätzung des Modells berücksichtigt. Ausgangsdaten sind Bilder von verschiedenen Positionen, abgeleitete genaue Orientierungen der Bilder und eine begrenzte Zahl von 3D Punkten (Bartelsen and Mayer 2010). Die erste Neuerung des vorgestellten Ansatzes besteht in der Art und Weise, wie zusätzliche Punkte (Unbekannte) in dem Dreiecksgitter aus den vorgegebenen 3D Punkten positioniert werden. Dank den genauen Positionen dieser zusätzlichen Punkte werden präzisere und genauere rekonstruierte Oberflächen bezüglich Form und Anpassung der Bildtextur erhalten. Die zweite Neuerung besteht darin, dass individuelle Bias-Parameter für verschiedene Bilder und angepasste Gewichtungen für unterschiedliche Bildbeobachtungen verwendet werden, um damit unterschiedliche Intensitäten verschiedener Bilder als auch Ausreißer zu berücksichtigen. Die dritte Neuerung sind die verwendete Faktorisierung der Design-Matrix und die Art und Weise, wie die Gitter in Ebenen zerlegt werden, um die Laufzeit zu reduzieren. Das wesentliche Element des vorgestellten Modells besteht in der Varianz der Intensitätswerte der Bildbeobachtungen innerhalb eines Dreiecks. Mit dem vorgestellten Ansatz können genaue 3D Oberflächen für unterschiedliche Arten von Szenen rekonstruiert werden. Ergebnisse werden als VRML (Virtual Reality Modeling Language) Modelle ausgegeben, welche sowohl das Potential als auch die derzeitigen Grenzen des Ansatzes aufzeigen.This thesis presents a fully three dimensional (3D) surface reconstruction algorithm from wide-baseline image sequences. Triangle meshes represent the reconstructed surfaces allowing for an easy integration of image- and geometry-based constraints. We extend the successful approach for 2.5D reconstruction of Heipke (1990) to full 3D. To take into account occlusion and non-Lambertian reflection, we apply robust least squares adjustment to estimate the model. The input for our approach are images taken from different positions and derived accurate image orientations as well as sparse 3D points (Bartelsen and Mayer 2010). The first novelty of our approach is the way we position additional 3D points (unknowns) in the triangle meshes constructed from given 3D points. Owing to the precise positions of these additional 3D points, we obtain more precise and accurate reconstructed surfaces in terms of shape and fit of texture. The second novelty is to apply individual bias parameters for different images and adapted weights for different image observations to account for differences in the intensity values for different images as well as to consider outliers in the estimation. The third novelty is the way we factorize the design matrix and divide the meshes into layers to reduce the run time. The essential element for our model is the variance of the intensity values of image observations inside a triangle. Applying the approach, we can reconstruct accurate 3D surfaces for different types of scenes. Results are presented in the form of VRML (Virtual Reality Modeling Language) models, demonstrating the potential of the approach as well as its current shortcomings

    Similar works