A Uniform Non-Mechanistic Exposition of the physical disciplines as a Mathematical System Theory

Abstract

Die Alternative Theorie (AT) wurde vor 16 Jahren erstmals in Dieter Straubs opus magnum der internationalen Öffentlichkeit vorgestellt. Diese Theorie basiert auf einem interdisziplinär orientierten mathematischen Beschreibungsverfahren, das auf der Makroebene einheitlich für alle traditionellen Disziplinen der Physik gilt. Aber auch die Quantenmechanik und die Allgemeine Relativitätstheorie müssen sich in unterschiedlicher Weise den Prinzipien der AT stellen. Die Geschichte der AT (Teil I) beginnt mit J. Willard Gibbs. Zwischen 1876 und 1878 publizierte er seine Artikelserie mit dem Gesamttitel „On the Equilibrium of Heterogeneous Substances“. Überraschenderweise sind darin die Hauptsätze der Thermodynamik ohne Einfluss auf die Beziehungen zwischen den Zustandsgrößen jedes thermodynamischen Systems. Gottfried Falks Beitrag – Teil II – besteht zum einen in der weitreichenden Entdeckung, dass in Gibbs Werk zur begrifflichen und mathematischen Fundierung der Thermodynamik implizit ein universelles mathematisches Beschreibungsverfahren insgesamt für alle Teildisziplinen der Makrophysik enthalten ist. Darüber hinaus hat er dieses Verfahren als eine neue physikalische Systemtheorie mengentheoretisch formuliert und mathematisch eingehend begründet. Schließlich erfolgte die Fortentwicklung der GFD (Gibbs-Falk-Dynamik) durch Straub und Michael Lauster – Teil III – unter dem Arbeitstitel „Alternative Theorie (AT) der Physik“. Dazu wurde die GFD um die explizite Einbeziehung der dissipativen Prozesse in die Theorie erweitert. Außerdem gelang die Ankopplung der mikrophysikalischen Basis an ihr makrophysikalisches System durch eine statistische Methode, die zu nichtlinearen Gleichungen vom Schrödingertyp führt. Die AT ist eine mathematische Theorie mit universellen Elementen für jedes ihrer wissenschaftlichen Systeme. Ihre Grundlage ist das Quadrupel 'Größe – Wert – Zustand – System', das sich in folgendem Satz leicht merken lässt: „In einem Zustand eines Systems hat jede physikalische Größe einen Wert.“ In der Dissertation konnten nun zunächst viele in der GFD und AT bis dahin ungeklärte Sachverhalte begrifflicher und mathematischer Art aufgeklärt werden. Vor allem ist davon die Grundstruktur der Basisgleichungen von GFD und AT betroffen. Ist der Begriff eines physikalischen Systems synonym mit der ihn betreffenden Systemenergie E, so ist letztere bis auf eine Konstante gleich der Summe von Paaren ξk ∙Χk – sogenannten Energieformen k – wobei die Faktoren ξk und Χk je zwei konjugierte »Allgemein-physikalische Größen« bedeuten, also Systemvariable, die in jeder physikalischen Disziplin dieselbe physikalische Bedeutung haben. Diese Paarstruktur ist wie Immanuel Kant in seinem ersten Hauptwerk – Kritik der reinen Vernunft (1781/1786) – dargelegt hat, eng mit der menschlichen DENKSTRUKTUR verknüpft. In langer Kontroverse mit der Metaphysik von G. W. Leibniz gelang es Kant explizit nachzuweisen, dass es sich bei Χk um eine extensive Größe handelt, und ξk die ihr zugeordnete intensive Größe ist. Mehr noch: jede Größe Χk ist von mengenartiger Dimension, bestimmt durch die der Form k eigenen Mengengröße. In der Physik ist dies lt. Kant die Masse mk der Form k und bei den Energieformen, die den beteiligten Elementarteilchensorten j entsprechen, die Teilchenmasse mj. Die ξk sind von anderer Art: Sie markieren bestimmte Zustandseigenschaften z. B das Temperaturgleichgewicht. Wir nennen diese Paarstruktur aus gutem Grund die KANT-STRUKTUR. Sie ist konstitutiv für die gesamte Physik insofern auch, als sich bestimmte Energieformen ξk ∙Χk wie T∙S für keine Disziplin je 'abschalten' lassen. Die Konsequenzen sind spektakulär. So wird ein in sich konsistentes Standardmodell präsentiert, welches z. B. erlaubt, das vom CERN seit 2011 bis jetzt vergeblich avisierte Higgs-Boson als ganz normales Hochenergieteilchen zu identifizieren. Um gar die Existenz von dessen Nullpunktmasse (126,8 GeV) zu erklären, bedarf es in der GFD keines Higgs-Mechanismus.The AT was first presented to the scientific public 16 years ago by Dieter Straub in his opus magnum Alternative Mathematical Theory of Non-equilibrium Phenomena [1997]. This theory relies on an interdisciplinary oriented mathematical model, valid on the macro level for all traditional physical disciplines. But even Quantum Mechanics and the General Theory of Relativity must respectively rise to the diverse challenges posed by the principles of the AT. The history of the AT begins with Josiah Willard Gibbs. Between the years 1876 and 1878, he published series of articles under the summary title „On the Equilibrium of Heterogeneous Substances“. In them, and surprisingly enough, the Laws of Thermodynamics do not appear to influence the relations between the various state properties of any thermodynamic system. The contribution by Gottfried Falk – part II – consists in the far-reaching discovery, that Gibbs’ work on conceptual and mathematical foundations of thermostatics implies a formal and mathematically universal method of description for all subdisciplines of macro-physics. Moreover, G. Falk transformed this procedure into a new SYSTEM THEORY of PHYSICs by help of a set-theoretic formulation and a thorough mathematical reasoning. Falk’s theory is referred to in the present THESIS as Gibbs-Falk Dynamics (GFD). Eventually, Dieter Straub and Michael Lauster have advanced the further development of the GFD – part III – under the working title “Alternative Theory of Physics” (AT). They enlarged the GFD by explicitly integrating the dissipative processes. Moreover, the coupling of the microphysical basis to its macrophysical system succeeded by a statistic method which leads to non-linear equations of the Schrödinger type. The AT is a mathematical theory with universal elements for each of its scientific systems. It is founded on the quadruple “Quantity / Value / State / System”, as condensed into the sentence: "At a given state of a system, each physical quantity has a value." Now, the present THESIS achieves to clarify many conceptual and mathematical issues hitherto unresolved within GFD and AT. This affects both the GFD and AT primarily as regards the basic structures of their fundamental equations. If the concept of a PHYSICAL SYSTEM is synonymous with its respective system energy E, the latter equates up to a constant to the sum of pairs ξk ∙Χk, (a wide variety of abilities k which will count as energy forms), while the factors ξk and Χk mean two conjugated »General Physical Quantities«, (GpQ) each, i.e. system variables, which in any physical discipline carry the same physical signification. This pair structure relates closely to the theory of the human mind's structure, as Immanuel Kant has established it in his famous first major work –Critique of Pure Reason (1781/1787). In a long controversy with Gottfried Wilhelm von Leibniz’ Metaphysics, Kant achieved to prove explicitly that Χk is an extensive quantity, and ξk is its conjugated intensive quantity. What is more: any GpQ Χk owns a dimension which is merged into sets defined by the energy form k. In physics, this is – according to Kant - the mass mk of the GpQ k, or the particle mass mj regarding the forms of energy which correlate to all particle types j involved. The ξk are of a different kind: they determine certain state properties, e. g. the equilibrium of temperatures. With good reason, we call such a pair structure “the Kant structure”. It is constitutive for Physics as a whole, esp. as special energy forms ξk ∙Χk as T∙S which can never be “switched off” for any discipline. As will be shown by select applications, the consequences of the GFD are spectacular. Thus a self-contained standard model emerges, which allows, e. g. to identify the HIGGS BOSON (since 2011 targeted by CERN, but in vain) as just a normal high-energy particle. In order to explain the existence of its zero-point mass (126.8 GeV), the GFD does not even need any Higgs mechanisms

    Similar works