CORE
🇺🇦
make metadata, not war
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
Redox-responsive nanoplatform for codelivery of miR-519c and gemcitabine for pancreatic cancer therapy
Authors
Vijaya R. Bhatt
Rajan Bhattarai
+6 more
Vinod Kumar
Virender Kumar
Feng Lin
Ram I. Mahato
Chalet Tan
Xiaofei Xin
Publication date
11 November 2020
Publisher
eGrove
Abstract
Copyright © 2020 The Authors, some rights reserved. Desmoplastic and hypoxic pancreatic cancer microenvironment induces aberrant expression of miRNAs and hypoxia-inducible factor-1α (HIF-1α) responsible for gemcitabine (GEM) resistance. We demonstrated that miR-519c was down-regulated in pancreatic cancer and transfection of miR-519c in GEM-resistant pancreatic cancer cells inhibited HIF-1α level under hypoxia. We synthesized redox-sensitive mPEG-co-P(Asp)-g-DC-g-S-S-GEM polymer, with GEM payload of 14% (w/w) and 90% GEM release upon incubation with l-glutathione. We synthesized mPEGco- P(Asp)-g-TEPA-g-DC for complex formation with miRNA. Chemical modification of miR-519c with 2\u27-O-methyl phosphorothioate (OMe-PS) at 3\u27 end enhanced its stability and activity without being immunogenic. Epidermal growth factor receptor targeting peptide GE11 decoration increased tumor accumulation of micelles after systemic administration and significantly inhibited orthotopic desmoplastic pancreatic cancer growth in NSG mice by down-regulating HIF-1α and genes responsible for glucose uptake and cancer cell metabolism. Our multifunctional nanomedicine of GEM and OMe-PS-miR-519c offers a novel therapeutic strategy to treat desmoplasia and hypoxia-induced chemoresistance in pancreatic cancer
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
eGrove (Univ. of Mississippi)
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:egrove.olemiss.edu:pharmac...
Last time updated on 18/03/2021