The shifted Jacobi polynomial integral operational matrix for solving Riccati differential equation of fractional order

Abstract

In this article, we have applied Jacobi polynomial to solve Riccati differential equation of fractional order. To do so, we have presented a general formula for the Jacobi operational matrix of fractional integral operator. Using the Tau method, the solution of this problem reduces to the solution of a system of algebraic equations. The numerical results for the examples presented in this paper demonstrate the efficiency of the present method

    Similar works