Abstract

The recourse function in a stochastic program with recourse can be approximated by separable functions of the original random variables or linear transformations of them. The resulting bound then involves summing simple integrals. These integrals may themselves be difficult to compute or may require more information about the random variables than is available. In this paper, we show that a special class of functions has an easily computable bound that achieves the best upper bound when only first and second moment constraints are available.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44185/1/10479_2005_Article_BF02204821.pd

    Similar works

    Full text

    thumbnail-image