PLANT-MEDIATED ZNO NANOPARTICLES USING FICUS RACEMOSA LEAF EXTRACT AND THEIR CHARACTERIZATION, ANTIBACTERIAL ACTIVITY

Abstract

Objective: The motto of this research work was to synthesize the zinc oxide nanoparticles (ZnONPs) should be environmental friendly. Hence, it receives more attention toward the green route method.Methods: At last, the Ficus racemosa ZnONPs (FR-ZnONPs) were successfully synthesized using a simple protocol and eco favorable technique. This paper highlights the biosynthesis of ZnONPs using leaf extract of F. racemosa. Results: FR-ZnONPs formation was confirmed by the different spectral analysis such as UV-visible spectroscopy, Fourier transform-infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), and electronic dispersive X-ray spectroscopy. UV-visible studies revealed that the intrinsic band gap absorptions were at 372 nm and photoluminescence study showed that the blue emission at 492, 481, 473, and 450 nm and the green emission at 540 nm, respectively. FR-ZnONPs are wurtzite hexagonal structure with an average grain size of 15 nm was found from XRD analysis.Conclusion: FR-ZnONPs exhibited good antimicrobial efficacy on Escherichia coli and Staphylococcus aureus with various concentrations (100 μg/mL, 75 μg/mL, and 50 μg/mL) by disc diffusion method. The results showed the good antibacterial activity of FR-ZnONPs on G+ve and G-ve bacteria

    Similar works