Objective: The present work deals with the objective of development and characterization of novel dendritic macromolecules as solubility enhancer and carrier for sustained release of Ketoprofen. Cytotoxicity and hemolytic assay of dendritic macromolecules were also estimated as an objective to evaluate its toxicity and biocompatibility.
Methods: Dendritic macromolecules were synthesized using divergent method. Synthesized macromolecules were characterized by spectral techniques such as FTIR, 1H-NMR, 13C-NMR electro-spray ionization mass spectrometry and elemental analysis. Enhanced aqueous solubility of ketoprofen was evaluated with respect to pH, generation number and concentration of dendrimer using Higuchi and Connors method. Sustained release of ketoprofen from ketoprofen loaded dendrimers was measured and compared with that of free ketoprofen. Hemolytic assay and cytotoxicity of G3 dendrimer on A-549 cell lines were studied to evaluate toxicity and biocompatibility of dendrimer. All dendritic macromolecules were fully characterized by spectral techniques.
Results: Solubility study revealed that aqueous solubility of ketoprofen by dendrimer increased with increase in pH, concentration and generation of dendrimer. Ketoprofen was released slowly from ketoprofen loaded dendrimer compared to that of free ketoprofen. Dendritic macromolecules were less cytotoxic and showed less hemolytic potential.
Conclusion: It can be concluded that dendrimer have high potential as carriers and solubility enhancers of hydrophobic drug.
Keywords: Triazine based dendrimer, Ketoprofen, Drug Carrier, Cytotoxicity, Hemolysis