CORE
🇺🇦
make metadata, not war
Services
Research
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
Super-resolution architecture of mammalian centriole distal appendages reveals distinct blade and matrix functional components
Authors
Y-D Chen
Z Chen
+11 more
WM Chong
C-E Huang
W-N Jane
J-C Liao
G Mazo
B Tanos
TMN Tran
M-FB Tsou
W-J Wang
RR Weng
TT Yang
Publication date
1 May 2018
Publisher
'Springer Science and Business Media LLC'
Doi
Abstract
Copyright © The Author(s) 2018. Distal appendages (DAPs) are nanoscale, pinwheel-like structures protruding from the distal end of the centriole that mediate membrane docking during ciliogenesis, marking the cilia base around the ciliary gate. Here we determine a super-resolved multiplex of 16 centriole-distal-end components. Surprisingly, rather than pinwheels, intact DAPs exhibit a cone-shaped architecture with components filling the space between each pinwheel blade, a new structural element we term the distal appendage matrix (DAM). Specifically, CEP83, CEP89, SCLT1, and CEP164 form the backbone of pinwheel blades, with CEP83 confined at the root and CEP164 extending to the tip near the membrane-docking site. By contrast, FBF1 marks the distal end of the DAM near the ciliary membrane. Strikingly, unlike CEP164, which is essential for ciliogenesis, FBF1 is required for ciliary gating of transmembrane proteins, revealing DAPs as an essential component of the ciliary gate. Our findings redefine both the structure and function of DAPs.Ministry of Science and Technology, Taiwan (Grant Number 103-2112-M-001-039-MY3); Academia Sinica Career Development Award, Academia Sinica Nano Program; University of Alabama at Birmingham (UAB) Hepato/Renal Fibrocystic Diseases Core Center (HRFDCC) Pilot Award (NIH 5P30DK074038-09); NIH grant GM088253, American Cancer Society grant RSG-14-153-01-CCG; Geoffrey Beene Cancer Research Center grant
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Brunel University Research Archive
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:bura.brunel.ac.uk:2438/239...
Last time updated on 07/02/2022
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1038%2Fs41467-018-...
Last time updated on 11/12/2019