Decentralized Coordination of Dynamic Software Updates in the Internet of Things

Abstract

Large scale IoT service deployments run on a high number of distributed, interconnected computing nodes comprising sensors, actuators, gateways and cloud infrastructure. Since IoT is a fast growing, dynamic domain, the implementation of software components are subject to frequent changes addressing bug fixes, quality insurance or changed requirements. To ensure the continuous monitoring and control of processes, software updates have to be conducted while the nodes are operating without losing any sensed data or actuator instructions. Current IoT solutions usually support the centralized management and automated deployment of updates but are restricted to broadcasting the updates and local update processes at all nodes. In this paper we propose an update mechanism for IoT deployments that considers dependencies between services across multiple nodes involved in a common service and supports a coordinated update of component instances on distributed nodes. We rely on LyRT on all IoT nodes as the runtime supporting local disruption-minimal software updates. Our proposed middleware layer coordinates updates on a set of distributed nodes. We evaluated our approach using a demand response scenario from the smart grid domain

    Similar works