Development of an efficient nano-fluid cooling/preheating system for PV-RO water desalination pilot plant

Abstract

YesIn order to improve the performance of the reverse osmosis (RO) desalination plant powered by photovoltaic (PV), two cooling systems were proposed in this study to cool the PV and preheating the RO feed water as well. In the cooling design (1), the cooling fluid flows in direct contact with the back surface of the PV through channels of half circular cross-sections. While in the design (2), it flows through channels of squar cross-sections fixed on the PV back surface. Two nano-fluids were also tested as cooling fluid: H2O/CuO and H2O/Al2O3, in addition to distilled water for the purpose of comparison. The effect of changing the weight concentration of the nano-fluid (0.05, 0.1, and 0.15%) on the PV performance was also investigated. The results showed that the PV integrated with the cooling design (1) achieves better performance compared to design (2) at all studied cooling fluids. The improvements in the electric efficiency of the PV integrated with design (1) reached 39.5, 34.8 and 27.3 % when CuO and Al2O3 nano-fluids and distilled water were used as cooling fluid, respectively, compared to the uncooled PV. Based on the obtained experimental results, the PV integrated with design (1) was selected to power the RO with H2O/CuO nano-fluid of weight concentration 0.15% and flow rate 0.15 kg/s being used as the coolant. The RO powered by the improved PV was tested at different salinities of brackish water when the preheating technique was implemented. The results showed that the proposed PV-RO desalination system produces 366 l/day when brackish water of salinity 3000 ppm was used.The full text will be available 12 months after online publication

    Similar works