Purpose: To examine the biocompatibility and osteoinductive potential of sub-microfibrous membranes with cells in vitro and in vivo.Methods: Polylactic acid (PLA) and poly-ε-caprolactone (PCL) were blended at various volume ratios (PLA:PCL = 100:0, 70:30, 50:50, 30:70 and 0:100) and each membrane form was prepared by electrospinning. Cell viability, biocompatibility, and bone regeneration were measured.Results: The membranes from the PLA/PCL blends prepared by an electrospinning process showed a range of diameter distribution ranging from 1,580 to 550 nm. The cells of 100 % PCL membrane (smallest diameter) exhibited significantly higher adhesion and proliferation than those of the other membranes. Among the membranes from PLA/PCL blends, PCL membrane showed weak inflammatory changes in the early stages of implantation without acute or chronic inflammation. PCL membranes with osteogenically-induced cells successfully stimulated new bone formation in a rate calvarial defect model.Conclusion: The results indicate that biodegradable PCL sub-microfibrous membrane produced by electrospinning process seems to have excellent biocompatibility, and may be used as a scaffold for bone tissue engineering.Keywords: Biocompatibility, Hard tissue, Biomaterial availability, Bone remodeling, Polylactic acid, Poly-ε-caprolactone, Osteoinductive potential, Sub-microfibrous membrane