CORE
🇺🇦
make metadata, not war
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
Comparison of the effect of argon, hydrogen, and nitrogen gases on the reduced graphene oxide-hydroxyapatite nanocomposites characteristics
Authors
A. Aidun
C.E. Bünger
+6 more
M. Canillas Perez
A. Karimi Behnagh
D.Q.S. Le
H. Nosrati
R. Sarraf-Mamoory
R. Zolfaghari Emameh
Publication date
1 January 2020
Publisher
Abstract
In this study, the effect of the argon, nitrogen, and hydrogen gases on the final properties of the reduced graphene oxide-hydroxyapatite nanocomposites synthesized by gas injected hydrothermal method was investigated. Four samples were synthesized, which in the first sample the pressure was controlled by volume change at a constant concentration. In subsequent samples, the pressure inside the autoclave was adjusted by the injecting gases. The initial pressure of the injected gases was 10 bar and the final pressure considered was 25 bar. The synthesized powders were consolidated at 950 °C and 2 MPa by spark plasma sintering method. The final samples were subjected to Vickers indentation analysis. The findings of this study indicate that the injection of argon, hydrogen, and nitrogen gases improved the mechanical properties of the nanocomposites. Injection of gases increased the crystallinity and particle size of hydroxyapatite, and this increase was greater for nitrogen gas than for others. Injection of these gases increased the rate of graphene oxide reduction and in this case the effect of nitrogen gas was greater than the others. Figure not available: See fulltext. © 2020 The Author(s)
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
eprints Iran University of Medical Sciences
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:eprints.iums.ac.ir:33855
Last time updated on 11/10/2021