IDENTIFICAÇÃO DE SÍTIOS DE REPRODUÇÃO DE AEDES AEGYPTI COM AERONAVE REMOTAMENTE PILOTADA (ARP)

Abstract

A drone and its flight accessories are called Remotely Piloted Aircraft System (RPAS - Remotely Piloted Aircraft System), being a tool with a wide range of applications in several areas. The research explored new possibilities for the use of RPAS with a focus on the diagnosis and monitoring of breeding sites for Aedes aegypti. For this, objects considered as potential breeding grounds for mosquito larvae were distributed in environments that allowed greater or lesser visual detection of targets (packages / containers) in four environments: soil covered with dry grass, exposed soil, soil covered with low grass. and soil covered with tall grass. We use RPAS, Phantom 4 Pro with an Ipad Mini 4 mobile device and the DJI GO program for flights. We fly over targets for photographic recording at four heights from the ground (20m, 30m, 60m and 80m). The visual detection of the targets was carried out by a group of 10 people called a jury. The Jury assessed the greater or lesser probability of target detection, depending on three variables: type of target, type of environment and height of aerial photography. Photographs taken at a height of 30 meters represented the largest number of targets identified (30% of the targets). The most identified targets were tires, pet bottles, cans of beer and cans of paint. The least identified were colored plastic canisters and beer bottles. The research helped to improve operational procedures for controlling and combating endemics and epidemics, which may identify possible mosquito breeding sites through RPA, monitoring areas of difficult access that pose a risk to people's physical integrity.Um drone e seus complementos de voo são denominados Sistema de Aeronave Remotamente Pilotada (RPAS - Remotely Piloted Aircraft System), sendo uma ferramenta com ampla gama de aplicações em diversas áreas. A pesquisa prospectou novas possibilidades de uso de RPAS com enfoque no diagnóstico e monitoramento de locais de reprodução de Aedes aegypti. Para isso, objetos considerados como potenciais criadouros de larvas de mosquito foram distribuídos em ambientes que permitiam maior ou menor detecção visual dos alvos (embalagens/recipientes) em quatro ambientes: solo coberto com gramínea seca, solo exposto, solo coberto com gramínea de porte baixo e solo coberto com gramínea de porte alto. Foi utilizado RPAS, Phantom 4 Pro com dispositivo móvel e o programa nativo da RPA para os voos. Sobrevoamos alvos para registro fotográfico em quatro alturas do solo (20m, 30m, 60m e 80m). A detecção visual dos alvos foi realizada por um grupo de 10 pessoas denominado júri. O Júri aferiu a maior ou menor probabilidade de detecção de alvos, em função de três variáveis: tipo de alvo, tipo de ambiente e altura de tomada da fotografia aérea. Fotografias obtidas a 30 metros de altura representaram o maior número de alvos identificados (30% dos alvos). Os alvos mais identificados foram pneu, garrafa PET, latas de cerveja e latas de tinta. Os menos identificados foram vasilhas plásticas coloridas e garrafas de cerveja. A pesquisa colaborou para o aperfeiçoamento de procedimentos operacionais de controle e combate a endemias e epidemias, que poderão identificar possíveis criadouros do mosquito por meio de RPA, monitorando áreas de difícil acesso que ofereçam risco a integridade física das pessoas. Palavras-chave: drone; geotecnologias; arboviroses; dengue.   Identification of reproduction sites of Aedes aegypti with remote pilot aircraft (ARP)   ABSTRACT: A drone and its flight accessories are called Remotely Piloted Aircraft System (RPAS - Remotely Piloted Aircraft System), being a tool with a wide range of applications in several areas. The research explored new possibilities for the use of RPAS with a focus on the diagnosis and monitoring of breeding sites for Aedes aegypti. For this, objects considered as potential breeding grounds for mosquito larvae were distributed in environments that allowed greater or lesser visual detection of targets (packages / containers) in four environments: soil covered with dry grass, exposed soil, soil covered with low grass. and soil covered with tall grass. Was used RPAS, Phantom 4 Pro with an Ipad Mini 4 mobile device and the DJI GO program for flights. We fly over targets for photographic recording at four heights from the ground (20m, 30m, 60m and 80m). The visual detection of the targets was carried out by a group of 10 people called a jury. The Jury assessed the greater or lesser probability of target detection, depending on three variables: type of target, type of environment and height of aerial photography. Photographs taken at a height of 30 meters represented the largest number of targets identified (30% of the targets). The most identified targets were tires, pet bottles, cans of beer and cans of paint. The least identified were colored plastic canisters and beer bottles. The research helped to improve operational procedures for controlling and combating endemics and epidemics, which may identify possible mosquito breeding sites through RPA, monitoring areas of difficult access that pose a risk to people's physical integrity. Keywords: drone; geotecnologies; arbovírus; dengue

    Similar works