System efficient ESD design concept for soft failures

Abstract

This research covers the topic of developing a systematic methodology of studying electrostatic discharge (ESD)-induced soft failures. ESD-induced soft failures (SF) are non-destructive disruptions of the functionality of an electronic system. The soft failure robustness of a USB3 Gen 1 interface is investigated, modeled, and improved. The injection is performed directly using transmission line pulser (TLP) with varying: pulse width, amplitude, polarity. Characterization provides data for failure thresholds and a SPICE circuit model that describes the transient voltage and current at the victim. Using the injected current, the likelihood of a SF is predicted. ESD protection by transient voltage suppressor (TVS) diodes is numerically simulated in several configurations. The results strongly suggest the viability of using well-established hard failure mitigation techniques for improving SF robustness, and the possibility of using numerical simulation for optimization purposes. A concept of soft failure system efficient ESD design (SF-SEED) is proposed and shown to be effective --Abstract, page iv

    Similar works